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Abstract

In this article, solving of fractional partial differential equation FPDE with optimal time control

approach is developed. Conformable derivative as a new definition of fractional derivative is considered.

At first the FPDE is converted to optimal time control problem, then by using an embedding process,

the obtained system is converted to finite-dimensional linear programming LP problem and finally op-

timal time corresponded by FPDE system is approximated. For example, this method is used on the

conformable fractional heat equation with the initial and boundary conditions.
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1 Introduction

Partial differential equation PDE as an interest issue for modelling of natural phenomenal such as chem-

ical physics, fluid flows and viscoelasticity is studied by many authors [1, 2, 3]. By extra information in

fractional calculus a lot of abnormal physical systems such as fractional heat equation, fractional wave

equation is described by FPDEs. In many works, Riemann-Liouville, Caputo and Grnwald-Letnikov

fractional operators is applied to modelling and interpreting of system behaviors. Moreover, many meth-

ods for solving FPDE are based on the Laplace transform, Fourier series, Finite differences, Legendre

wavelets and other numerical methods [4, 5]. Since most of the existing fractional operators are defined

by singular kernels and non-local structure, they do not obey the basic chain and product rules. To over-

come these drawbacks, in this work we present a novel approach to solve FPDEs by using conformable

fractional derivative CFD, that is introduced by khalil [6]. CFD as a local and limit -based definition is

expanded rapidly and used in many applications. However in this work all major initial and boundary

conditions on FPDE is considered and embedding process, as a useful method is examined to solve this

problem. As an advantage of the proposed method can be mentioned that, it is self-starting and not
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iterative, so this method has been developed to solve a variety of FPDE problems. Authors used CFD to

solve Fractional optimal control problems successfully in previous works such as [8] and now are going to

apply this definition for modelling a fractional heat equation in an unknown minimum time as an example

of FPDEs. Using moment form and an embedding process respectively, problem can be approximated

by finite-dimensional LP one’s.

2 Preliminaries

In this section some basic concepts of conformable fractional derivative is mentioned. We assume w = f(t)

(t ≥ 0) be a real valued and continuous function, and α ≥ 0 is a given real number.

Definition 2.1 Let f : [0,∞] −→ R, then the CFD of f(t) is defined as follows:(see[6])

Tαf(t) = lim
ϵ→0

f(t+ ϵt1−α)− f(t)

ϵ
, 0 ≤ α < 1, t ≥ 0. (1)

We write sometimes f (α)(t) for Tαf(t) to denote CFD of order α, also if Tαf(t) exists, then we say f is

α-differentiable.

Let α ∈ (0, 1] and f , g be α-differentiable for t > 0, then the following properties can be resulted by

the CFD:

Tα(af + bg) = aTα(f) + bTα(g), a, b ∈ R, (2)

Tα(t
p) = ptp−α, p ∈ R, (3)

Tα(λ) = 0, λ = const, (4)

Tα(fg) = fTα(g) + gTα(f), (5)

Tα(
f

g
) =

gTα(f)− fTα(g)

g2
. (6)

Moreover, if f be a differentiable function, then one can prove that

Tαf(t) = t1−α df(t)

dt
. (7)

Definition 2.2 Let f : (0, t) −→ R (t ≥ 0), be a continuous function and α ∈ (0, 1), the conformable

α-fractional integral of a function f is defined as:

Iαf(t) =

∫ t

0

τα−1f(τ)dτ. (8)

Theorem 2.3 Let f : [0,∞] −→ R be a function such that f is differentiable and also α-differentiable.

Let g be a function defined in the range of f and also differentiable, then we have the following rule:

Tα(fog)(t) = (Tαf(g(t)).(Tαg(t)).g(t)
α−1. (9)

Theorem 2.4 Let f be a differentiable function for t > 0 , and 0 < α ≤ 1, then

IαTαf(t) = f(t)− f(0). (10)

3 System description and formulation

Consider the following time fractional partial heat equation in conformable difinition sense: In the region

Π = [0, 1]× [0, T ] and 0 < α ≤ 1, the function f(x, t) satisfies :
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∂αf

(∂t)α
=

∂2f

(∂x)2
(x, t) ∈ Π (11)

subject to boundary and initial values:

f(x, 0) = 0, ∂f(0,t)
∂x

= 0, ∂f(1,t)
∂x

= β(u(t)), β = const, f(x, T ) = ν. (12)

We say that the control function u(t) is admissible and denote u(t) ∈ Uad, if the following conditions

hold:

(i) u(t) is a measurable function on −1 ≤ u(t) ≤ 1 for t ∈ [0, T ],

(ii) u(t) puts f(x, T ) = ν, in final time T where x ∈ [0, 1], ν is a suitable arbitrary constant with |ν| < 1

,

(iii) u(t) minimizes the following functional.

Min I(u(.)) =

∫ T

0

f0(t, u(t))dt, (13)

where f0 ∈ C(Ω) that is the space of all real-valued continuous functions on Ω = [0, T ]× [−1, 1]. If we

set f0 = 1, the above problem is denoted as minimum optimal time problem. Consider µk; k = 1, 2, · · · ,
are the sequence of positive roots of the equation µktanµk = β.(see [2, 3] for more details )

By using relation (7) and multiply by eµ
2
k

tα

α cos(µkx) and integrate over both side of (11) on the

region Π and taking into account the boundary and initial conditions, one can see that the following

equation:

ν

∫ 1

0

cos(µkx)dx = βcos(µk)

∫ T

0

tα−1e−µ2
k

Tα−tα

α u(t)dt, k = 1, 2, · · · (14)

Since µktan(µk) = β and replace with µ2
k = λk, as a sequence of eigenvalues [2], the following relation

is obtained: ∫ T

0

tα−1e−λk
Tα−tα

α u(t)dt =
ν

λk
k = 1, 2, · · · (15)

Let ϕn(t, u) = tα−1e−λn
Tα−tα

α u(t) and an = ν
λn

for n = 1, 2, ....

So, we have the following minimum time optimal control problem:

Min T =

∫ T

0

dt (16)

subject to ∫ T

0

ϕn(t, u(t))d(t) = a(n). n = 1, 2, ... (17)

4 Metamorphosis

In general form, it is difficult to characterize the optimal control in Uad (see [9]), so we use a transformation

to enlarge the set Uad.

Let u(.) ∈ Uad, the following mapping is considered:

Λ : Θ −→
∫ T

0

Θ(t, u(t))dt, Θ ∈ C(Ω), (18)

where this mapping defines a positive linear functional on C(Ω), that identify each admissible u(.) by

Λ(u). also the transformation u −→ Λ is an injection, [9]. By (18), the problem (16)-(17) is rewritten as

follows:

Min Λ(1), (19)



An approximate method for solving fractional partial differential equation by using an embedding process4

subject to

Λ(ϕn) = a(n). n = 1, 2, ... (20)

By the Riesz representation theorem (see[10]), every Radon measure Λ can be corresponding to

regular, finite and unique Borel measure. So there exists a Borel measure µ on M+(Ω); the space of all

positive Radon measures on Ω; such that

Λ(Θ) =
∫
Ω
Θ(t, u(t))dt = µ(Θ), Θ ∈ C(Ω), (21)

These measures are required to have some properties, [11] such as

|µ(Θ)| ≤ T sup
Ω

|Θ(t, u(t))|, (22)

So,

µ(1) ≤ T, (23)

and by rewriting (20)

µ(ϕn) = a(n), n = 1, 2, .... (24)

Suppose that θ ∈ C(Ω), where θ is not depend on u, i.e.

θ(t, u1) = θ(t, u2), (25)

for all t ∈ [0, T ] and u1, u2 ∈ [−1, 1], where u1 ̸= u2, then the measure µ must satisfy

µ(θ) =

∫
Ω

θdµ =

∫ T

0

θ(t, u)dt = ∆θ (26)

where ∆θ is the integral of θ(t, u(t)) over [0, T ].

With the help of analysis used in [11] and topologize the space M+(Ω), the set of all positive Radon

measures on Ω, by the weak∗ − topology, finally we have the following optimization problem in measure

space:

Min µ(1), (27)

subject to

µ ∈ Q (28)

where Q as a compact subset of M+(Ω), that is the intersection of all measures satisfied (23),(24) and

(26) Simultaneously. (see[11])

5 Approximation of the optimal measure

for solving the main problem (16)-(17), after the transformation the optimal time problem to minimize a

linear form over a set of positive measures (27)-(28), here the optimal measure can be approximated by

a finite-dimensional linear programming LP problem. The first step of process is consider the following

problem in the space of all positive Radon measure:

Minimize I(µ) =
∫
Ω
dµ ≡ µ(1) (29)

Subject to 
µ(ϕn) = an, n = 1, 2 · · · ,
µ(1) ≤ T,

µ(θ) = ∆θ, θ ∈ C(Ω).

(30)
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Theorem 5.1. Consider Q(M1,M2) be a subset of M+(Ω) consisting of all measures which satisfy the

problem of minimizing µ(1) over the set Q(M1,M2) of measures in M+(Ω) satisfying:
µ(ϕn) = an, n = 1, 2 · · · ,M1

µ(1) ≤ T,

µ(θk) = ∆θk, k = 1, 2, · · · ,M2

(31)

If M1 → ∞, M2 → ∞ then infQ(M1,M2)µ(1) −→ infQµ(1).

proof: see[11]

Now consider the following important theorem ( see [11]).

Theorem 5.2. The optimal measure in the set Q(M1,M2, ) at which the functional µ −→ µ(1) attains

its minimum has the form

µ∗ =

M1+M2∑
k=1

α∗
kδ(z

∗
k) (32)

where the coefficients α∗
k ≥ 0 and z∗k ∈ Ω are unknowns for k = 1, · · · ,M1+M2. Consider δ(z) ∈ M+(Ω)

is a unitary atomic measure which is supported by the singleton set {z} and satisfied

δ(z)f = f(z), f ∈ C(Ω), z ∈ Ω.

Thus by using (32), the problem (29)-(30) changes to the following nonlinear programming problem:

Min
M1+M2∑

k=1

α∗
k (33)

subject to 

M1+M2∑
k=1

α∗
kϕn(z

∗
k) = an n = 1, 2, ...,M1

M1+M2∑
k=1

α∗
kθ

j
k(z

∗
k) = ∆θj j = 1, 2, ...,M2,

M1+M2∑
k=1

α∗
k ≤ T,

α∗
k ≥ 0 k = 1, 2, ...,M1 +M2.

(34)

where z∗k ∈ Ω.

Let ω = {z1, · · · , zN} be a countable approximately dense subset of Ω. A measure µ∗ ∈ M+(Ω) as a

good approximation for µ can be found such that

µ∗ =
N∑

k=1

α∗
kδ(zk), (35)

where the coefficients α∗
k are the same as in the optimal measure µ∗ in (32), and zk ∈ ω, k = 1, 2, ..., N .

(see [11]).

So we have the following problem:

Min
N∑

k=1

αk (36)

subject to 

N∑
k=1

αkϕn(zk) = an n = 1, 2, ...,M1

N∑
k=1

αkθ
j
k(zk) = ∆θj j = 1, 2, ...,M2,

N+1∑
k=1

αk = T,

αk ≥ 0 k = 1, 2, ..., N + 1.

(37)
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where zi; i = 1, ..., N and N >> M1 + M2 for sufficiently large N in ω. Also it is mentioned that, we

added αN+1 as a slack variable in corresponded constraint.

Now, we state the method of approximation T as optimal time by numerical method and LP problem:

It is to be noted that T is unknown in (36)-(37), so for approximation it, the time interval [0, T ] is

divided into m1 portions and U = [−1, 1] to m2 portions, so N = m1m2, and consider [0, T ] into two

parts: [0, T ] = [0, T1] ∪ [T1, T ].

Let T1 is the best lower bound for T . By a search algorithm, which is proposed in [12], the best choice

for this lower bound is selected.

Also functions ϕn(t, u(t)) appearing in (37) may be written as

ϕn(t, u) = tα−1e−λn
Tα−tα

α u(t) = eλn
tα

α e−λn
Tα

α u(t)tα−1 (38)

By Taylor series expansion in a neighborhood of Tα

α
-

Tα
1
α

for 0 < α ≤ 1, one can see the following relation:

e−λn
Tα

α ≈ e−λn
Tα
1
α (1− λn(

Tα

α
− Tα

1

α
)). (39)

As a special case of choosing functionals on space Ω, the functions θk are introduced as a piecewise

constant which are dependent only on the variable t:

θk =

{
1 t ∈ Jk = [ (k−1)T1

m1−1
, kT1
m1−1

] k = 1, 2, · · · ,m1 − 1,

0 o.w.
(40)

and for k = m1, we define Jm1 = [T1, T ]. So the right hand side of second equalities of (37), that is the

integral of θk over [0, T ], is as follows:

∆θk =

{
T1

m1−1
k = 1, · · · ,m1 − 1,

T − T1. k = m1.
(41)

By the (40) and (41), the second equalities of (37) is as follows:

m2∑
k=1

αk =
T1

m1 − 1
,

2m2∑
k=m2+1

αk =
T1

m1 − 1
, · · ·

(m1−1)m2∑
(m1−2)m2+1

αk =
T1

m1 − 1
,

(m1m2)∑
(m1−1)m2+1

αk = T − T1, (42)

Adding the both side of equalities (42) leads to:

N∑
k=1

αk = T. (43)

So the slack variable αN+1 in (37) equals zero.

Lastly the extended form of LP problem for finding optimal time is :

Min
N∑

k=1

αk (44)

subject to

N∑
k=1

αkt
α−1
k uke

λn
tαk
α − νeλn

Tα
1
α Tα

α
= −νeλn

Tα
1
α (

Tα
1
α

− 1
λn

) n = 1, 2, ...,M1,

im2∑
k=(i−1)m2+1

αk = T1
m1−1

i = 1, 2, ...,m1 − 1,

N∑
k=(m1−1)m2+1

αk − T = −T1,

αk ≥ 0, T > 0, 0 < α ≤ 1 k = 1, 2, ..., N.

. (45)
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According to the boundary condition in (12), the piecewise-constant control function is obtained from

the solving of (44)-(45) is constructed such that the following numerical error:

E1 =∥ f(x, T )− ν ∥22 (46)

tends to zero.(see [3, 12]). The method of approximation optimal control is outlined in [3].

6 Conclusion

In this paper the fractional heat equation in conformable definition sense is considered. The embedding

process as a straightforward method is used to convert FPDE problem to OCP one’s. Reformulating of

heat equation in classical form to fractional form respect to time variable successfully is examined. CFD

as a local fractional derivative is used to present a new and useful technique for solving FPDEs. The

authors believe that this method can be used in other FPDEs especially in nonlinear fractional partial

differential equations and in future works this subject will be investigated.

References

[1] Gachpazan M and Kamyad A V, Solving of second order nonlinear pde problems by using artificial

controls with controlled error J. Appl. Math. & Computing 15 173, 2004.

[2] Galchukl I, Optimal control of systems described by parabolic equations J siam j. control 7, 1969.

[3] Effati S Nazemi A and Shabani H, Time optimal control problem of the heat equation with thermal

source J IMA 31 385, 2014.

[4] Xingyang Y and Chuanju X, Spectral optimization methods for the time fractional diffusion inverse

problem J. Numer. Math. Theor. Meth. Appl. 6 499, 2013.

[5] Mophou G. M 2011 Optimal control of fractional diffusion equation J. Computer and mathematics

with Applications. 61 68

[6] Khalil R Horani M. Al Yousef A and Sababheh M, A new definition of fractional derivative:

Journal of Computational and Applied Mathematics 264 65, 2014.

[7] Yavuz M, Novel solution methods for initial boundary value problems of fractional order with

conformable differentiation J. IJOCTA 8 1, 2017.

[8] Ziaei E Farahi M.H and Safaie, E. The approximate solution of nonlinear fractional optimal control

problems by measure theory approach J Progr. Fract. Differ. Appl. doi:10.18576/pfda/paper, 2017.

[9] Farahi M. H Mehne H. H and Borzabadi A. H, Wing drag minimization by using measure theory J

optim. methods soft 21 169, 2006.



An approximate method for solving fractional partial differential equation by using an embedding process8

[10] Royden H. L, Real Analysis London: The Macmillan Company, 1970.

[11] Rubio J. E, Control and Optimization: the Linear Treatment of Nonlinear problem: Manchester

University Press, Manchester and John Wiely, NewYork and Landon, 1986.

[12] Mehne H. H Farahi M.H and Kamyad A.V, MILP modelling for the time optimal control problem

in the case of multiple targets J optim. control appl. meth 27 77, 2006.


	Introduction
	Preliminaries
	System description and formulation
	 Metamorphosis
	Approximation of the optimal measure
	Conclusion

