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Abstract

In this paper a method based on neural networks to solve fractional infinite-horizon optimal con-

trol problems (FIHOCP)s is presented where the dynamic control system depends on Caputo fractional

derivatives. First, with the help of an approximation, the Caputo derivative is replaced to integer order

derivative. Using a suitable change of variable, the IHOCP is transformed to a finite-horizon one. Ac-

cording to the Pontryagin minimum principle (PMP) for optimal control problems and by constructing

an error function, an unconstrained minimization problem is defined. In the optimization problem, trial

solutions for state, costate and control functions are used where these trial solutions are constructed by

using two-layered perceptron neural network. Two numerical results are given to show the efficiency.

Keywords: Fractional infinite-horizon problems, Caputo fractional derivative, Pontryagin minimum

principle, Optimal control problem, Neural networks, Optimization.

1 Introduction

In this paper a novel optimal control problem in Fractional calculus as FIHOCPs is presented. The

important novelty of this paper is that a fractional dynamic system is appeared in an optimal control

problem, where the problem is defined on [0,∞). Based on some mentioned advantages of neural networks

for computing, we provide a hybrid method based on neural network scheme for solving FIHOCP. It

should be noted that in solving the FIHOCP with neural networks, we can replace the fractional derivative

with integer order derivative with a good approximation. The Riemann-Liouville derivative is expandable

in a power series involving integer order derivatives only. To approximate this derivative, a second

approach was carried out in [1], where a good approximation is obtained without the requirement of such

higher-order smoothness on the admissible functions.
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2 Preliminaries

In [1] a good approximation is obtained without the requirement of such higher-order smoothness on the

admissible functions. The method can be explained, for left Riemann-Liouville fractional derivatives, in

the following way

R
aD

α
t (y(t)) = A(α)(t− a)−αy(t) +B(α)(t− a)1−αẏ(t)

−
∑∞
p=2 C(α, p)(t− a)1−p−αyp(t),

(1)

where α ∈ (0, 1) and y ∈ C2[a, b]. In (1), yp(t) is the solution of the systemẏp(t) = (1− p)(t− a)p−2y(t),

yp(a) = 0,
(2)

for p = 2, 3, . . . . A similar formula can be deduced for the Caputo fractional derivative by using rela-

tionship between Riemann-Liouville and Caputo fractional derivatives as:

c
aD

α
t (y(t)) = R

aD
α
t (y(t))−

n−1∑
k=0

y(k)(a)

Γ(k − α+ 1)
(t− a)k−α. (3)

For computational purposes, we truncate the sum and consider the finite expansion

R
aD

α
t (y(t)) ≈ A(α, k)(t− a)−αy(t) +B(α, k)(t− a)1−αẏ(t)

−
∑k
p=2 C(α, p)(t− a)1−p−αyp(t),

(4)

where k ≥ 2 and

A(α, k) =
1

Γ(1− α)

[
1 +

k∑
p=2

Γ(p− 1 + α)

Γ(α)(p− 1)!

]
, B(α, k) =

1

Γ(2− α)

[
1 +

k∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!

]
.

C(α, p) =
Γ(p− 1 + α)

Γ(2− α)Γ(α− 1)(p− 1)!
.

3 Fractional infinite-horizon optimal control problem

A FIHOCP can be defined as follows

Minimize J =

∫ ∞
0

f(t, x(t), u(t)) dt, (5)

subject to

c
0D

α
t (x(t)) = g(t, x(t), u(t)), t ∈ [0,∞),

x(0) = x0, limt→∞ x(t) = xf ,
(6)

where

x : [0,∞)→ Rn, u : [0,∞)→ Rl.

We first replace the operator c
0D

α
t (x(t)) with the help of approximation (4). For simplicity of our

discussion, we assume A = A(α, k), B = B(α, k) and Cp = C(α, p). Thus

ẋ(t) =
g(t, x(t), u(t))−At−αx(t) +

∑k
p=2 Cpt

1−p−αyp(t) + x(0)t−α

Γ(1−α)

Bt1−α
.

We also define

Y (t) = (y2(t), y3(t), . . . , yk(t)),
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and

G(t, x(t), Y (t), u(t)) =
g(t, x(t), u(t))−At−αx(t) +

∑k
p=2 Cpt

1−p−αyp(t) + x(0)t−α

Γ(1−α)

Bt1−α
.

Thus, the OCP (5) and (6) is reduced as

Minimize J =

∫ ∞
0

f(t, x(t), u(t)) dt, (7)

subject to



ẋ(t) = G(t, x(t), Y (t), u(t)),

ẏp(t) = (1− p)tp−2x(t), p = 2, . . . , k,

x(0) = x0, limt→∞ x(t) = xf ,

yp(0) = 0, p = 2, . . . , k.

(8)

4 Transformation of the infinite-horizon into a finite one

The following time transformation is introduced in order into transform the infinite horizon problem to

a finite-horizon one defined on τ ∈ [0, 1) as

t =
τ

1− τ . (9)

Using the proposed transformation, the infinite horizon problem (5) and (6) is replaced by

Minimize J =

∫
[0,1)

1

(1− τ)2
f(

τ

1− τ ,X(τ), U(τ)) dτ, (10)

subject to



Ẋ(τ) = 1
(1−τ)2

G( τ
1−τ , X(τ),Y(τ), U(τ)),

Ẏp(τ) = 1
(1−τ)2

(1− p)( τ
1−τ )p−2X(τ), p = 2, . . . , k,

X(0) = x0, limτ→1− X(τ) = xf ,

Yp(0) = 0, p = 2, . . . , k,

(11)

where

X(τ) = x(
τ

1− τ ), U(τ) = u(
τ

1− τ ), Y(τ) = Y (
τ

1− τ ). (12)

To find the optimal control, a Hamiltonian function for the problem (10) and (11) is as

H =
1

(1− τ)2

[
f(

τ

1− τ ,X, U) + λG(
τ

1− τ ,X,Y, U) +

k∑
p=2

γp((1− p)(
τ

1− τ )p−2X)
]
, (13)

where λ and γp, p = 2, . . . , k are the Lagrange multipliers. For simplicity we define Υ(τ) = (γ2(τ), γ3(τ), . . . , γk(τ)),

Y = (Y2,Y3, . . . ,Yk) and H = H(X,Y, U, λ,Υ, τ). We use trial solutions for the state, control and La-

grange multiplier functions as
nx =

∑I
i=1 ν

x
i σ(zxi ), zxi = wxi τ + bxi , ny =

∑I
i=1 ν

y
i σ(zyi ), zyi = wyi τ + byi ,

nu =
∑I
i=1 ν

u
i σ(zui ), zui = wui τ + bui , nλ =

∑I
i=1 ν

λ
i σ(zλi ), zλi = wλi τ + bλi ,

nΥ =
∑I
i=1 ν

Υ
i σ(zΥ

i ), zΥ
i = wΥ

i τ + bΥi ,

(14)

where σ is a sigmoid function [2]. The trial solutions are selected as

X̄ = x0 + τ(1− τ)nx + τ(xf − x0), Ȳ = τny, Ū = nu, λ̄ = nλ, Ῡ = (1− τ)nΥ. (15)

The trial solutions (15) of feed forward neural network are the universal approximation and must satisfy

in necessary optimality conditions of the problem (10) and (11) as

σH̄

σλ̄
= ˙̄X(τ),

σH̄

σῩ
= ˙̄Y(τ),

σH̄

σX̄
= − ˙̄λ(τ),

σH̄

σȲ
= − ˙̄Υ(τ),

σH̄

σŪ
= 0 (16)
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where H̄ = H(τ, X̄, Ȳ, Ū , λ̄, Ῡ). An error function corresponds to the system (16) may be constructed as

E(Ω) =
1

2

m∑
j=1

{
E1(τj ,Ω) + E2(τj ,Ω) + E3(τj ,Ω) + E4(τj ,Ω) + E5(τj ,Ω)

}
, (17)

where Ω = (wx, wy, wu, wλ, wΥ, bx, by, bu, bλ, bΥ, νx, νy, νu, νλ, νΥ) andE1(τ,Ω) =
[
σH̄
σλ̄
− ˙̄X(τ)

]2
, E2(τ,Ω) =

[
σH̄
σῩ
− ˙̄Y(τ)

]2
,

E1(τ,Ω) =
[
σH̄
σX̄

+ ˙̄λ(τ)
]2
, E2(τ,Ω) =

[
σH̄
σȲ + ˙̄Υ(τ)

]2
, E5(τ,Ω) =

[
σH̄
σŪ

]2
.

(18)

In this way, the first problem is transformed into an unconstrained optimization problem which can

be solved by any classical mathematical optimization algorithms.

5 Numerical examples

This section is devoted to illustrate the efficiency of the proposed numerical approach. Consider the

problem

Minimize
1

2

∫ ∞
0

(x2
1(t) + 4u2(t)) dt,

subject to


c
0D

α
t (x1(t)) = x2(t),

c
0D

α
t (x2(t)) = −x2(t) + u(t),

x1(0) = x2(0) = 0.1, limt→∞ x1(t) = limt→∞ x2(t) = 0.

The optimal trajectory of the problem for α = 1 is given in [3] as

x1(t) = [0.1 + (0.1 + 0.1√
2
)t] exp (−t√

2
), x2(t) = [0.1− (0.1 + 0.1√

2
)t] exp (−t√

2
).

Figure 1: Optimal states X1(.), X2(.) and control U(.) for different values of α
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