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Abstract 

 

 In this paper, a fractional super-twisting (FST) sliding mode controller design is derived for a 

class of nonlinear fractional chaotic systems. A new theorem which facilitates designing 

procedure of robust controller is provided. The stability of the closed loop system is verified in 

sense of the Lyapunov theorem. The main merits of the mentioned controller designing method 

are 1) stability of the closed loop system, 2) convergence of the output tracking error to zero, 3) 

robustness against external disturbance and uncertainty, and 4) reduction of chattering 

phenomenon. Finally, the simulation results demonstrate the capability and efficiency of the 

proposed controller methodology.      
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1  Introduction 

   In recent year, fractional calculus has more attraction of the researchers [7]. About 300 years 

ago, Fractional calculus was the mathematical topic, but nowadays it develops rapidly in 

engineering [8]. The subject of fractional calculus has a lot of applications mainly in the field of 

mathematical sciences [9], and engineering such as electromagnetics, viscoelasticity, fluid 

mechanics, electrochemistry, biological population models, optics, and signals processing [2], 

chaos phenomena [10], controllers and observers design [15]. In order to model physical and 

engineering processes in which use the fractional differential equations because of its accuracy 

than the integer order dynamical systems for description and modeling of a real object [11]. In 

the past decades, among the investigations of fractional order systems control design for some 

fractional order systems has been a hot topic. Many different control methods have been proposed 

for various kinds of fractional systems [5, 13]. 

   Sliding mode control technique for designing robust controller is common approach. The sliding 

mode control is the variable structure control, which have the simple overall structure, fast 
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response, no sensitive about the internal parameters and external disturbances [1, 12]. However, 

the traditional sliding mode control has the chattering, because of the discontinuity nature of 

controller design. For reduction of the chattering and maintain the merits of traditional sliding 

mode, high order sliding mode is proposed in [4, 6]. The super twisting algorithm is one of the 

most applied methods in high order sliding mode.  

   Compare to the other researches, this paper focuses on the super twisting sliding mode controller 

design for disturbed nonlinear system. Our methodology has the following merits: 

1- Deriving a fractional class of super twisting sliding mode controller to reduce the 

chattering phenomena. 

2- The stability of the closed loop system and convergence of the tracking error to zero are 

both guaranteed in presence of the disturbances. 

   In this paper, section 2 includes basic definition of fractional integral and differential definition, 

section 3 provides a problem formulation, and in section 4, a new super twisting sliding mode 

controller for a class of nonlinear fractional systems introduces. In section 5, illustrates simulation 

results of the proposed method on chaotic fractional system. Finally, section 6 involves some brief 

conclusions. 

2  PRELIMINARIES  

   In this section, some basic definitions of the fractional systems are given. 

   Fractional calculus is a generalization of integration and differentiation to non-integer-order 

fundamental operator. The continuous integro-differential operator is defined as: 

𝐷𝑡
𝑞

𝑎 = {

𝑑𝑞

𝑑𝑡𝑞                         𝑞 > 0

1                             𝑞 = 0

∫ (𝑑𝜏)−𝑞𝑡

𝑎
             𝑞 < 0

                      (1) 

where a and t are the bounds of the operation and qϵ R is the order [8]. 

   There are three common definitions for fractional derivative and one for fractional integral, 

which describe in the below text. 

Definition 2.1:  The Grunwald - Letnikov (G), Riemann-Liouville (RL), and Caputo(C) 

derivative of order q of function f(t) is described as: 

𝐺             𝐷𝑡
𝑞

𝑓(𝑡)𝑎
𝐺𝐿 = lim

𝑁→∞
[

𝑡−𝑎

𝑁
]

−𝑞
∑ (−1)𝑗 (𝑞

𝑗
) 𝑓(𝑡 − 𝑗 [

𝑡−𝑎

𝑁
])𝑁−1

𝑗=0                  (2) 

𝑅𝐿           𝐷𝑡
𝑞

𝑓(𝑡)𝑎
𝑅𝐿 =

1

𝛤(1−𝑞)

𝑑

𝑑𝑡
∫ (𝑡 − 𝜏)−𝑞𝑓(𝜏)𝑑𝜏

𝑡

𝑎
                                         (3)  

𝐶              𝐷𝑡
𝑞

𝑓(𝑡)𝑎
𝑐 =

1

𝛤(1−𝑞)
∫ (𝑡 − 𝜏)−𝑞𝑓̇(𝜏)𝑑𝜏

𝑡

𝑎
                                              (4) 

Where 0 < 𝑞 < 1 and 𝛤(. ) is the Gamma function. 

Definition 2.2: The Riemann-Liouville fractional integral of order q is defined as: 

𝐷𝑡
−𝑞

𝑓(𝑡)𝑎 =
1

𝛤(𝑞)
∫ (𝑡 − 𝜏)𝑞−1𝑓(𝜏)𝑑𝜏

𝑡

𝑎
                                  (5). 

3  PROBLEM FORMULATION 

In this section, the super twisting sliding mode controller is designed for a wide class of nonlinear 

fractional order systems as: 
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{

𝐷𝑞𝑥 = 𝐹1(𝑥, 𝑦, 𝑧)                            

𝐷𝑞𝑦 = 𝐹2(𝑥, 𝑦, 𝑧) + 𝑢(𝑡) + 𝜎(𝑡)

𝐷𝑞𝑧 = 𝐹3(𝑥, 𝑦, 𝑧)                            

              (6) 

where x=[x, y, z]T is the state variable, F1 , F2 and F3 show nonlinear function ,and  u presents the 

control input and furthermore 𝜎(𝑡) shows the uncertainties. The Chen, Liu, Lu, and Lorenz 

chaotic systems can be presented in form of the equation (6). 

   Conventional sliding mode controller design uses linear sliding-mode (LSM) surface to track 

the desire trajectory, this causes inherently nonlinear control. The main challenge in LSM 

controller design is sliding surface selection based on the system performance requirements. 

   The first step to controller design is assigned a sliding surface such as: 

𝑠 = 𝑥 + 𝜆1𝑦 + 𝜆2𝑧.                                   (7) 

where 𝜆1 and 𝜆2 are positive constants. Taking the q-order fractional differential of the above 

equation yields. 

𝐷𝑞𝑠 = 𝐷𝑞𝑥 + 𝜆1𝐷𝑞𝑦 + 𝜆2𝐷𝑞𝑧                       (8) 

   The control objectives are 1) tracking of the desire trajectories, 2) convergence of the sliding 

surface to zero without chattering and 3) stability of the closed loop system. Without loss of 

generality, it is assumes the desire trajectories are zero. 

4 SUPER-TWISTING SLIDING MODE CONTROL DESIGN FOR A CLASS OF 

NONLINEAR FRACTIONAL SYSTEMS 

   In last section, it has been shown the sliding surface to achieve control objectives. We show 

how to derive the control input. The total input of the system can be proposed as below. 

𝑢(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑟(𝑡)                                    (9) 

where the 𝑢𝑒𝑞(𝑡) 𝑎𝑛𝑑  𝑢𝑟(𝑡) are the equal and the reaching controller parts that define as follows: 

𝑢𝑒𝑞(𝑡) =
1

𝜆1
[−𝐹1(𝑥, 𝑦, 𝑧) − 𝜆1 𝐹2(𝑥, 𝑦, 𝑧) − 𝜆2 𝐹3(𝑥, 𝑦, 𝑧) − 𝜆1 𝜎(𝑡)]    (10) 

and 

𝑢𝑟(𝑡) =
1

𝜆1
[−𝛼|𝑠|𝜌𝑠𝑔𝑛(𝑠) − 𝛽 ∫ 𝑠𝑔𝑛(𝑠) 𝑑𝑡]                                            (11) 

   The first term compensates the uncertainties of the model and the second one reduces the 

chattering phenomena in which the parameters mentioned in equation (11) satisfy the following 

inequalities. 

0 < ρ < 1     ,      𝛼, 𝛽 > 0 

To facilitate the super twisting sliding mode controller, the below theorem is derived by the 

authors. 

Theorem 4.1: consider the nonlinear fractional-order dynamical system is given in (6), and the 

controller structure proposed in (9), (10) and (11) based on the sliding surface mentioned in (7) 

make the closed loop system stable in sense of the Lyapunov, and furthermore, both the 

convergence of the error trajectory to zero and boundedness of all signals involved in the closed 

loop system are guaranteed.  

Proof: we candidate the following Lyapunov function to investigate the closed loop stability. 

𝑉 =
1

2
𝑠2                             (12) 
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By taking the q-order fractional derivative of proposed Lyapunov function to produce. 

𝐷𝑞V = ∑ (𝑞
𝑖
)𝑠(𝑖). 𝐷(𝑞−𝑖)𝑠∞

𝑖=0 < 𝑠. 𝐷𝑞𝑠       (13) 

So, the above equation is rewritten as follow: 

𝐷𝑞V < 𝑠. 𝐷𝑞𝑠 = 𝑠[𝐷𝑞𝑥 + 𝜆1𝐷𝑞𝑦 + 𝜆2𝐷𝑞𝑧] = 𝑠[𝐹1(𝑥, 𝑦, 𝑧) + 𝜆1 𝐹2(𝑥, 𝑦, 𝑧) + 𝜆1 𝜎(𝑡) + 𝜆1𝑢 +

𝜆2 𝐹3(𝑥, 𝑦, 𝑧)] .                                         (14) 

According to (9), the (14) can be rewritten as: 

𝐷𝑞V < −𝛼|𝑠|𝜌+1 − 𝛽 ∫|𝑠| < 0                (15) 

According to standard Lyapunov theorem, we conclude the closed loop system is stable and 

accordingly the sliding surface converges to zero. In addition, the boundedness of the signals in 

the closed loop system is assured. It completes the proof. 

   To show the capability of the proposed controller, the mentioned method is applied on the class 

of chaotic system. 

5 SIMULATION RESULTS 

   In this section, the proposed control scheme has been applied on the simulation test case in order 

to investigate the efficacies and capability.  

   Consider the following nonlinear q-order fractional Lorenz system. 

{

𝐷𝑞𝑥 = 𝑎(𝑦 − 𝑥)                                 

𝐷𝑞𝑦 = 𝑐𝑥 − 𝑥𝑧 − 𝑦 + 𝑢(𝑡) + 𝜎(𝑡)

𝐷𝑞𝑧 = 𝑥𝑦 − 𝑏𝑧                               

     (16) 

Where (𝑎, 𝑏, 𝑐) = (10,8/3,28)  and 𝜎(𝑡) = sin (𝑤𝑡) and be considered as external disturbance. 

   To show the extremely chaotic performance of the mention equation (16), the figure 1 is derived 

for the initial conditions[x(0), y(0), 𝑧(0)] = [−9, −1,9] and [x(0), y(0), 𝑧(0)] = [1,5,4]. 

 
(b) 

 
(a) 

Figure1. The state variable of original system: (a) with [x(0), y(0), 𝑧(0)] = [−9, −1,9] 
and (b) with [x(0), y(0), 𝑧(0)] = [1,5,4] 

 
Using the proposed controller in equation (9) the states of the system are shown in Figure 2. 
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Figure2. The state variable with the proposed method with [x(0), y(0), 𝑧(0)] = [9,1,9] 

   According to the results of simulation, the comparison of Figures 1 and 2, it shows that the 

states of system asymptotically converge to zero without chattering. 

 

(b) 

 

(a)

   Figure3: (a) the proposed sliding surface and (b) the proposed control signal 

   Figure3a demonstrates the smoothness of the sliding surface tends to zero.    

   Figure3b shows that the control effort without any chattering phenomenon. 

   The simulation results show promising performances in both tracking and stability. It is obvious 

the proposed controller succeeds in chattering reduction. 

6  CONCLUSION 

This paper deals with a super-twisting sliding mode controller design for a class of chaotic 

nonlinear fractional order systems. Theoretical analysis by candidate Lyapunov function has been 

presented to show both the boundedness of all signals involved in closed loop system and stability 

of the closed loop system. Robustness of the proposed controller in presence of the external 

disturbances and furthermore the convergence of tracking error to zero are the main merits of the 

proposed controller design procedure. Simulation results authorize the promising performance of 

the proposed scheme. 
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