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Abstract 

In this paper, it is aimed to analyze the effects of 

variation of central angle and applied voltage on the 

critical buckling temperature of a thin cylindrical panel 

made of piezo-magnetic two-dimensional functionally 

graded material (2D-PFGM) subjected to constant 

magnetic field. Material properties of the structure 

assumed varying by exponential functions of volume 

fraction in longitudinal and circumferential directions. 

In order to tackle the problem, equilibrium equations 

have been initially derived by considering first order 

shear deformation theory and nonlinear terms of strain-

displacement relations. In the following, by making 

incremental changes to the displacement components, 

calculating resultant forces and moments, and using 

Lagrang equations on the second functional variation of 

potential energy, the stability equations of the panel 

have been derived. After solving the mentioned 

equations by applying generalized differential 

quadrature method based on the simply supported 

boundary conditions, critical buckling temperature has 

been determined. Results from these formulas are 

discussed and compared with those obtained by other 

authors. At the end, effects of applied voltage to the 

external surface and central angel of the panel on the 

critical buckling temperature have been analyzed.  

Keywords:“Piezo-Magnetic”-“2D-PFGM”-“Thermal 

buckling”-“GDQ method”-“Thin cylindrical panel”. 

 

1. Introduction 

Circular cylindrical shells and panels have found many 

applications in engineering structures. Consequently, 

mechanical and thermal buckling of these structures has 

been extensively studied. In addition, since the last 

decade, due to the increasing demands for high heat-

resistant, lightweight structures, interest in functionally 

graded structures, especially FG cylindrical shells, has 

drastically increased. Functionally graded materials 

(FGMs) are a new generation of composite materials, in 

which the volume fraction of two or more materials 

varied as a function of the position along a certain 

dimension [1]. 

       Knowledge and findings about the behavior of 

magneto-electro-elastic structures has gained more 
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importance recently as these smart structures have 

special ability for converting energy from one form to 

another (among magnetic, electric, and mechanical 

energy). The magneto-electric coupling effect in 

composite materials consisting a piezo-electric and a 

piezo-magnetic phase has recently attracted much more 

attention owing to the extensive applications for 

broadband magnetic field probes, electric packaging, 

acoustic, hydrophones, medical ultrasonic imaging, 

sensors, and actuators [2, 3, 4, and 5]. These composites 

are usually considered as smart or intelligent materials. 

The analytical modeling of such composites provides 

valuable opportunities for studying the effect of 

controlling and altering the response of composite 

structures made of these materials. Pan [6] derived 

exact solution for a simply supported and multilayered 

plate made of anisotropic piezoelectric and 

piezomagnetic materials under a static and mechanical 

load. Pan and Heyliger [7] solved a vibration problem 

of these materials. Bhangale and Ganensan [8] 

presented a static analysis for functionally graded; 

anisotropic, linear magneto-electro-elastic plates by a 

semi-analytical finite element method. Piezoelectric and 

piezomagnetic composites depict a coupling effect of 

electric and magnetic fields.  

       Many researchers have investigated buckling 

analysis of various structures since the last 10 years. 

Shen [9, 10] presented a post buckling analysis for 

nanocomposite cylindrical shells reinforced by single-

walled carbon nanotubes subject to axial compression 

and lateral or hydrostatic pressure in thermal 

environments. Thermal buckling analysis of moderately 

thick composite cylindrical shells under asymmetric 

thermal loading presented by Darvizeh et al. [11]. 

Shariyat [12] studied dynamic buckling of imperfect 

laminated plates with piezoelectric sensors and 

actuators subjected to thermo-electro-mechanical 

loadings, considering the temperature-dependency of 

material properties using a finite element method based 

on a higher-order shear deformation theory. Eslami et 

al. [13] investigated the thermoelastic buckling of thin 

cylindrical shells based on improved stability equations 

and Sanders assumptions. An exact solution for classic 
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coupled magneto-thermo-elasticity in cylindrical 

coordinates is developed by Jabbari et al. [14]. Long and 

Xuewu [15] presented buckling and vibration analysis 

for a functionally graded magneto-electro-thermo-

elastic (FGMETE) circular cylindrical shell. In this 

paper, the influences of various kinds of external loads, 

such as axial force, different temperatures, surface 

electric and magnetic voltage, on the buckling response 

of the shell investigated. Aboudi [16] and Lee [17] 

developed a micromechanics method for the prediction 

of the effective behavior of fully coupled electro-

magneto-thermo-elastic Multiphase composites. Biju et 

al. [18] studied the behavior of multiphase magneto-

electro-elastic sensors under harmonic mechanical 

loading using finite element method. Micromechanical 

modeling and behavior analysis of smart magneto-

electro-elastic materials using finite element method 

presented by Tian and Yu [19] and Kondaiah et al. [20]. 

Malekzadeh and Heydarpour [21] presented a transient 

thermo-elastic analysis of FGM cylindrical shells under 

moving boundary pressure and heat flux. In order to 

benefit from the high accuracy and low computational 

efforts of the DQM in conjunction with the effectiveness 

of the FEM in general geometry, loading and systematic 

boundary treatment, a combination of these methods 

was employed to discretize the governing equations in 

the spatial domain. 

       In FGMs, material properties are usually assumed 

varying in one direction. If the FGM has two-

dimensional dependent material properties, more 

effective material can be obtained. Based on this 

assumption, two-dimensional functionally graded 

materials with bi-directional dependent properties have 

been introduced. Jafari Mehrabadi and Sobhani [22] 

studied the thermoelastic analysis of a 2D functionally 

graded open cylindrical shell based on third-order shear 

deformation theory of Reddy. They proposed a 2D 

power-law distribution for volume fractions of 2D 

FGM. The governing equations and associated 

boundary conditions were derived using the Hamilton’s 

principle, and discretized by applying GDQM. 

       Obtaining the exact solution for governing 

equations becomes more complicated because 

properties of the 2D FGM are functions of positions. 

Owing to that, various methods including finite element 

method (FEM), finite difference method (FDM), 

boundary element method (BEM), and differential 

quadrature method (DQM) can be employed to analyze 

thermal buckling and stability of structures. DQM 

introduced by Bellman and Casti [23] for the first time. 

By utilizing this method, partial differential governing 

equations converted to linear algebraic equations. The 

improved version of DQM called generalized 

differential quadrature method (GDQM) introduced by 

Shu [24]. In this study, GDQM approach is used to 

discretize the governing equations of 2D-PFGM open 

cylindrical shell as an efficient and accurate numerical 

method [25–27]. 

       The present work focuses on Magneto-Thermo-

Elastic buckling analysis of a 2D PFGM open 

cylindrical shell. The material properties (Young’s 

modulus and density) are assumed to vary continuously 

through longitudinal and circumferential directions 

according to the rule of mixtures. The volume fraction 

is estimated through a volume fraction power-law. 

Nonlinear strain-displacement relations in cylindrical 

coordinates are considered. The total potential energy 

function for magneto-thermo-elastic loading present. 

Euler equations applied to the function of potential 

energy, and nonlinear stability equations of shells are 

obtained. The nonlinear stability equations of 2D PFGM 

open cylindrical shells for simply supported boundary 

conditions are derived using the variation formulation, 

and discretized by means of the generalized differential 

quadrature method (GDQM) to obtain critical 

temperature difference. Results are presented to analyze 

the effects of applied voltage to the external surface and 

central angle of the panel.  

 

2. Modeling and Formulation 

Consider a piezo-magnetic 2D-FG open cylindrical 

shell, in which α and R are angle and radius, 

respectively. The reference surface of the panel 

considered at its middle. Open cylindrical shell is 

subjected to a uniform magnetic field in 𝑥, 𝜃 and 𝑧  

direction.  
 

 
Fig. 1: The schematic of an open cylindrical shell with the 

curvilinear coordinate system. 

 

       The 2D-FGM open cylindrical shell is made by 

continuous gradation of four materials, two ceramics 

and two alloy metals. Volume fractions of the 

constituents vary in the longitudinal and circumferential 

directions as shown in Fig. 2. The volume fraction of the 

first ceramic material is changed from 1 at (x, 𝜃) =
(0, 𝛼)  to zero at (x, 𝜃) = (𝐿, 𝛼) by a power-law 

function. In addition, this volume fraction is changed 

continuously from 1 at (x, 𝜃) = (0,0) to zero at(x, 𝜃) =
(0, 𝛼). The volume fractions of the other materials 

change in a similar way in two directions. The 

constituents volume fraction are estimated as [28]. 
 

𝑉𝑚1(𝑥, 𝜃) = [1 − (
𝜃

𝛼
)
𝑛𝜃

] [1 − (
𝑥

𝐿
)
𝑛𝑥
] 

 

𝑉𝑚2(𝑥, 𝜃) = [1 − (
𝜃

𝛼
)
𝑛𝜃

] [(
𝑥

𝐿
)
𝑛𝑥
] 

 

𝑉𝑐1(𝑥, 𝜃) = [1 − (
𝑥

𝐿
)
𝑛𝑥
] [(

𝜃

𝛼
)
𝑛𝜃

] 
 

𝑉𝑐2(𝑥, 𝜃) = [(
𝑥

𝐿
)
𝑛𝑥
] [(

𝜃

𝛼
)
𝑛𝜃

] 
(1) 

 

that 𝑉𝑚𝑖(𝑖 = 1,2) and 𝑉𝑐𝑖(𝑖 = 1,2) are volume fractions 

of metals and ceramics, respectively. Moreover, 𝑛𝑥 and 
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𝑛𝜃 are the constant exponent of volume fraction power-

law and 𝑛𝑥 , 𝑛𝜃 ≥ 0.  

 

 

Fig. 2: Top and side view of 2D FGM open cylindrical 

shell. 

       The effective material properties of the open 

cylindrical shell can expressed as [28] 
 

𝑃(𝜃, 𝑥) = 𝑃𝑚1𝑉𝑚1 + 𝑃𝑚2𝑉𝑚2 + 𝑃𝑐1𝑉𝑐1 + 𝑃𝑐2𝑉𝑐2 (2) 
 

that 𝑃(𝜃, 𝑥) is the material property of the FGM shell. 

Moreover, 𝑃𝑚𝑖(𝑖 = 1,2) and 𝑃𝑐𝑖(𝑖 = 1,2) are material 

properties of metals and ceramics, respectively. 
 

       Reddy’s first order shear deformation description of 

the displacement field [29] 
 

𝑢(𝑥, 𝜃, 𝑧) = 𝑢0(𝑥, 𝜃) + 𝑧𝜓(𝑥, 𝜃)  
𝑣(𝑥, 𝜃, 𝑧) = 𝑣0(𝑥, 𝜃) + 𝑧𝜑(𝑥, 𝜃)  

𝑤(𝑥, 𝜃, 𝑧) = 𝑤0(𝑥, 𝜃) (3) 
 

The displacement components along x, θ and z direction 

are denoted by 𝑢(𝑥, 𝜃, 𝑧), 𝑣(𝑥, 𝜃, 𝑧) and 𝑤(𝑥, 𝜃, 𝑧), 
respectively. 𝑢0(𝑥, 𝜃), 𝑣0(𝑥, 𝜃) and  𝑤0(𝑥, 𝜃) are 

displacement components in mid-surface. 𝜑(𝑥, 𝜃) , and 

𝜓(𝑥, 𝜃) denote rotations about x and 𝜃 axes, 

respectively.  

 
Fig. 3: Multi-phase magneto-elastic composite. 

The nonlinear strain–displacement relations are as [29] 

𝜀𝑥𝑥 = 𝑢,𝑥 +
1

2
𝑤,𝑥
2  

 

𝜀𝜃𝜃 =
1

𝑅
(𝑤 + 𝑣,𝜃) +

1

2𝑅2
𝑤,𝜃
2  

 

𝜀𝑧𝑧 = 0  

𝛾𝑥𝜃 =
1

𝑅
𝑢,𝜃 + 𝑣,𝑥 +

1

𝑅
𝑤,𝑥𝑤,𝜃 

 

𝛾𝑥𝑧 = 𝑤,𝑥 + 𝑢,𝑧  

𝛾𝜃𝑧 =
1

𝑅
𝑤,𝜃 + 𝑣,𝑧 (4) 

Substituting Eq. (3) in Eq. (4)  

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝜃𝜃
𝛾𝑥𝜃
𝛾𝑥𝑧
𝛾𝜃𝑧}

 
 

 
 

=

{
 
 

 
 
𝜀𝑥𝑥𝑚
𝜀𝜃𝜃𝑚
𝛾𝑥𝜃𝑚
𝛾𝑥𝑧𝑚
𝛾𝜃𝑧𝑚}

 
 

 
 

+ 𝑧

{
 
 

 
 
𝑘𝑥
𝑘𝜃
2𝑘𝑥𝜃
0
0 }
 
 

 
 

 

(5) 

{
 
 

 
 
𝜀𝑥𝑥𝑚
𝜀𝜃𝜃𝑚
𝛾𝑥𝜃𝑚
𝛾𝑥𝑥𝑚
𝛾𝜃𝑧𝑚}

 
 

 
 

=

{
 
 

 
 𝑢0,𝑥 +

1

2
𝑤0,𝑥
2

1

𝑅
(𝑤0+𝑣0,𝜃)+

1

2𝑅2
𝑤0,𝜃
2

1

𝑅
𝑢0,𝜃+𝑣0,𝑥+

1

𝑅
𝑤0,𝑥𝑤0,𝜃

𝑤0,𝑥 + 𝜓
1

𝑅
𝑤0,𝜃+𝜑 }

 
 

 
 

 

{

𝑘𝑥
𝑘𝜃
𝑘𝑥𝜃

} = {

𝜓.𝑥
1

𝑅
𝜑.𝜃

1

2
(
1

𝑅
𝜓.𝜃+𝜑.𝑥)

} 

(6) 

The index m indicates mid-surface strains. 𝑘𝑥, 𝑘𝜃 and 

𝑘𝑥𝜃  are curvatures. The distribution of magnetic 

potential along the thickness direction is approximated 

as below 
 

ŋ
𝐻
(𝑥, 𝜃, 𝑧) =

2𝑧

ℎ
𝑉𝐻(𝑥, 𝜃) (7) 

 

where 𝑉𝐻 is the external surface magnetic voltage of the 

open cylindrical shell. To Study the influence of 

uniform magnetic field on critical temperature 

difference of the cylindrical panel, a composite material 

with piezo-magnetic fibers is considered. The 

constitutive relations for 2D PFGM open cylindrical 

shell [15] 
 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝜃𝜃
𝜏𝜃𝑧
𝜏𝑥𝑧
𝜏𝑥𝜃}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄21 𝑄22 0 0 0
0 0 𝑄44 0 0

0 0 0 𝑄55 0

0 0 0 0 𝑄66 ]
 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥 − 𝛼(𝑥, 𝜃)𝑇(𝑧)

𝜀𝜃𝜃 − 𝛼(𝑥, 𝜃)𝑇(𝑧)
𝛾𝜃𝑧
𝛾𝑥𝑧
𝛾𝑥𝜃 }

 
 

 
 

 

               −

[
 
 
 
 
0 0 𝑞31
0 0 𝑞32
0 𝑞24 0
𝑞15 0 0

0 0 0 ]
 
 
 
 

{

𝐻𝑥𝑥
𝐻𝜃𝜃
𝐻𝑧𝑧

}          

 

{

𝐵𝑥𝑥
𝐵𝜃𝜃
𝐵𝑧𝑧

} = [
0 0 0 𝑞15 0

0 0 𝑞24 0 0
𝑞31 𝑞32 0   0   0

]

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝜃𝜃
𝛾𝜃𝑧
𝛾𝑥𝑧
𝛾𝑥𝜃}

 
 

 
 

+ 

                 [

𝜇11 0 0
0 𝜇22 0
0 0 𝜇33

] {

𝐻𝑥𝑥
𝐻𝜃𝜃
𝐻𝑧𝑧

} 
(8) 

where 𝜎𝑖𝑖 is normal stress components, 𝜏𝑖𝑗 are shear 

stress components, 𝜀𝑖𝑖 is normal strain components, 𝛾𝑖𝑗 

is shear strain, 𝐵𝑖𝑖  is magnetic induction, 𝜇𝑖𝑖 is magnetic 

constant, 𝑞𝑖𝑗  is piezo-magnetic constant, 𝛼(𝑥, 𝜃) is 

thermal expansion coefficient, 𝐻𝑖𝑖  is magnetic field 

component and 𝑄𝑖𝑗  is constant, where defined as follow 

[15, 29] 

𝐻𝜃𝜃 = −
1

𝑅 + 𝑧

𝜕ŋ
𝐻

𝜕𝜃
= −

2𝑧

ℎ(𝑅 + 𝑧)
𝑉𝐻,𝜃 

 

𝐻𝑧𝑧 = −
𝜕ŋ

𝐻

𝜕𝑧
= −

2

ℎ
𝑉𝐻 

 

𝐻𝑥𝑥 = −
𝜕ŋ

𝐻

𝜕𝑥
= −

2𝑧

ℎ
𝑉𝐻,𝑥 

 

𝑄11 = 𝑄22 =
𝐸(𝑥, 𝜃)

1 − 𝜈2
                        

𝑄12 = 𝑄21 =
𝜈𝐸(𝑥, 𝜃)

1 − 𝜈2
                      

 

 

 

𝑄44 = 𝑄55 = 𝑄66 =
𝐸(𝑥, 𝜃)

2(1 + 𝜈)
 

(9) 
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It is assumed that magnetic field has to satisfy the 

following equation [30] 
 

∇⃗⃗ . 𝐵⃗ = 0    (10) 
 

Substituting Eqs. (5, 7 and 9) in Eq. (8) lead to 
 

𝜎𝑥𝑥 = 𝑄11𝜀𝑥𝑥𝑚 +𝑄12𝜀𝜃𝜃𝑚 + 𝑧(𝑄11𝑘𝑥 + 𝑄12𝑘𝜃) − 

         𝑄11𝛼(𝑥, 𝜃)𝑇(𝑧) − 𝑄12𝛼(𝑥, 𝜃)𝑇(𝑧) +
2𝑞31
ℎ

𝑉𝐻 

𝜎𝜃𝜃 = 𝑄12𝜀𝑥𝑥𝑚 + 𝑄22𝜀𝜃𝜃𝑚 + 𝑧(𝑄12𝑘𝑥 + 𝑄22𝑘𝜃) − 

     𝑄12𝛼(𝑥, 𝜃)𝑇(𝑧) −  𝑄22𝛼(𝑥, 𝜃)𝑇(𝑧) +
2𝜇33
ℎ

2𝑞32
ℎ

𝑉𝐻 

𝜏𝜃𝑧 = 𝑄44𝛾𝜃𝑧𝑚 +
2𝑧𝑞24
ℎ(𝑅 + 𝑧)

𝑉𝐻,𝜃 
 

𝜏𝑥𝜃 = 𝑄66𝛾𝑥𝜃𝑚 + 2𝑧𝑄66𝑘𝑥𝜃  

𝐵𝑥𝑥 = 𝑞15𝛾𝑥𝑧𝑚 −
2𝑧𝜇11
ℎ

𝑉𝐻,𝑥 
 

𝐵𝜃𝜃 = 𝑞24𝛾𝜃𝑧𝑚 −
2𝑧𝜇22
ℎ(𝑅 + 𝑧)

𝑉𝐻,𝜃 
 

𝐵𝑧𝑧 = [𝑞31𝜀𝑥𝑥𝑚 + 𝑞32𝜀𝜃𝜃𝑚] + 𝑧[𝑞31𝑘𝑥 + 𝑞32𝑘𝜃] 

         −
2𝜇33
ℎ

𝑉𝐻  (11) 

       The total potential energy of the open cylindrical 

shell written as [31] 
 

𝑉 = 𝑈 + 𝛺 (12) 
 

Where U and 𝛺  are strain energy and external work, 

respectively, and are as follow [15, 29] 
 

𝑈 =
1

2
∫{𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝜃𝜃𝜀𝜃𝜃 + 𝜏𝑥𝜃𝛾𝑥𝜃 + 𝜏𝑥𝑧𝛾𝑥𝑧 + 𝜏𝑧𝜃𝛾𝑧𝜃 

             −𝜎𝑥𝑥𝛼(𝑥, 𝜃)𝑇(𝑧) − 𝜎𝜃𝜃𝛼(𝑥, 𝜃)𝑇(𝑧) + 𝐵𝑥𝑥𝐻𝑥𝑥 

             +𝐵𝜃𝜃𝐻𝜃𝜃 +  𝐵𝑧𝑧𝐻𝑧𝑧}𝑑𝑉 

𝛺 =
1

2
∫(𝑁𝑥

𝐻 − 𝑁𝑥
𝑇)(𝑤,𝑥

2 + 𝑣,𝑥
2) 𝑑𝐴 

(13) 
 

𝑁𝑥
𝐻  and 𝑁𝑥

𝑇  are magnetic and thermal loads and are 

defined as follow [15] 
 

𝑁𝑥
𝐻 = 𝑉𝐻∫

2𝑞31
ℎ

𝑑𝑧

ℎ

2

−
ℎ

2

 

𝑁𝑥
𝑇 = ∫ {𝑄11𝛼(𝑥, 𝜃) + 𝑄12𝛼(𝑥, 𝜃)}𝑇(𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 
(14) 

 

Force and moment resultants are defined as follow [29] 

(𝑁𝑖 , 𝑀𝑖) = ∫ 𝜎𝑖(1, 𝑧)𝑑𝑧           𝑖 = 𝑥, 𝜃

ℎ

2

−
ℎ

2

 

𝑄𝑖 = ∫ 𝜎𝑖𝑧𝑑𝑧                       𝑖 = 𝑥, 𝜃

ℎ

2

−
ℎ

2

 
(15) 

In addition, the following coefficients are defined as 

𝐴11, 𝐴12, 𝐴22, 𝐴44, 𝐴55 = ∫ {𝑄11, 𝑄12, 𝑄22, 𝑄44, 𝑄55}𝑑𝑧

ℎ

2

−
ℎ

2

 

𝐵11, 𝐵12, 𝐵22, 𝐵66 = ∫ 𝑧{𝑄11, 𝑄12, 𝑄22, 2𝑄66}𝑑𝑧

ℎ

2

−
ℎ

2

 

𝐶11, 𝐶12, 𝐶22 = ∫ {𝑄11, 𝑄12, 𝑄22}𝛼(𝑥, 𝜃)𝑇(𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 

𝐷11, 𝐷12, 𝐷22, 𝐷66 = ∫ 𝑧2{𝑄11, 𝑄12, 𝑄22, 2𝑄66}𝑑𝑧

ℎ

2

−
ℎ

2

 

𝑇11, 𝑇12, 𝑇22 = ∫ 𝑧{𝑄11, 𝑄12, 𝑄22}𝛼(𝑥, 𝜃)𝑇(𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 

𝑃11, 𝑃12, 𝑃22 = ∫ {𝑄11, 𝑄12, 𝑄22}𝛼
2(𝑥, 𝜃)𝑇2(𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 

𝐺1, 𝐺2 = ∫
1

ℎ
{𝑞31, 𝑞32}𝛼(𝑥, 𝜃)𝑇(𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 

𝑆1, 𝑆2 = ∫
1

ℎ
{𝑞31, 𝑞32}𝑑𝑧

ℎ

2

−
ℎ

2

 

𝑚11, 𝑚22,𝑚33 = ∫
4

ℎ2
{𝑧2𝜇11,

𝑧2𝜇22
(𝑅 + 𝑧)2

, 𝜇33} 𝑑𝑧

ℎ

2

−
ℎ

2

 

𝑛1, 𝑛2, 𝐼1, 𝐼2 = ∫
𝑧

ℎ
{𝑞31, 𝑞32, 𝑞15,

𝑞24
𝑅 + 𝑧

} 𝑑𝑧

ℎ

2

−
ℎ

2

 

𝐺1 + 𝐺2 = 𝐺3 (16) 
 

Substituting Eqs. (11, 13, 14 and 15) in Eq. (12) and 

applying Euler equations equilibrium equations for the 

shell obtained as below 

𝑅𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝜃,𝜃 − 2𝑆1𝑉𝐻,𝑥 = 0  

𝑅𝑁𝑥𝜃,𝑥 + 𝑁𝜃𝜃,𝜃 + (𝑁𝑥
𝐻 − 𝑁𝑥

𝑇)𝑣0,𝑥𝑥 + 2𝑆1𝑉𝐻,𝑥𝑣0,𝑥 

−2𝑆1𝑉𝐻,𝜃   =  0 

𝑁𝜃𝜃 + 𝑅𝑁𝑥
𝑇𝑤0,𝑥𝑥 − 2𝑆1𝑉𝐻,𝑥𝑤0,𝑥 − 𝑅𝑁𝑥𝑥𝑤0,𝑥𝑥 − 𝑅𝑄𝑥,𝑥 

−2𝑁𝑥𝜃𝑤0,𝑥𝜃 − 𝑄𝜃,𝜃 −
1

𝑅
𝑤0,𝜃𝜃𝑁𝜃𝜃 +

2

𝑅
𝑆2𝑤0,𝜃𝜃𝑉𝐻 

−
1

𝑅
𝑤0,𝜃 [(𝑁𝑥

𝐻 −𝑁𝑥
𝑇)𝑣0,𝑥𝑥 − 2𝑆1𝑉𝐻,𝑥𝑣0,𝑥] 

+2𝑅𝐼1𝑉𝐻,𝑥𝑥 + 2𝐼2𝑉𝐻,𝜃𝜃 2𝑆2𝑉𝐻 = 0 

𝑅𝑄𝑥 − 𝑅𝑀𝑥𝑥,𝑥 −𝑀𝑥𝜃,𝜃 + 2𝑅(𝑛1 − 𝐼1)𝑉𝐻,𝑥 = 0 

𝑅𝑄𝜃 − 𝑅𝑀𝑥𝜃,𝑥 −𝑀𝜃𝜃,𝜃 + 2(𝑛2 − 𝑅𝐼2)𝑉𝐻,𝜃 = 0 

𝑅𝑆1(𝑤0,𝑥
2 + 𝑣0,𝑥

2 ) + 𝑅𝑚33𝑉𝐻 − 𝑅𝐺3 − 𝑅𝑚1𝑉𝐻,𝑥𝑥 

−𝑅𝑚22𝑉𝐻,𝜃𝜃 = 0 

 (17) 

       Stability equations for 2D FGM thin cylindrical 

panel can be obtained by applying variation method to 

total potential energy of the structure. Applying first 

variation  𝛿𝑉 leads to equilibrium equations and second 

variation 𝛿2𝑉 to write stability equations. Critical 

buckling temperature is a temperature that the structure 

is not stable, i.e. is the minimum temperature, the value 

of second variation of potential energy larger than zero. 

To obtain buckling temperature 𝛿2𝑉 equal to zero. 

Applying equations functional of second variation of 

potential energy, the equations are as follow  

𝑅𝑁𝑥𝑥1,𝑥 + 𝑁𝑥𝜃1,𝜃 = 0  

𝑅𝑁𝑥𝜃1,𝑥 +𝑁𝜃𝜃1,𝜃 + 𝑅(𝑁𝑥
𝐻 −𝑁𝑥

𝑇)𝑣1,𝑥𝑥 + 2𝑅𝑆1𝑣𝐻,𝑥𝑣1,𝑥 

= 0 

𝑁𝜃𝜃1 − 𝑅𝑤1,𝑥𝑥𝑁𝑥𝑥0 − 2𝑤1,𝑥𝜃𝑁𝑥𝜃0 − 𝑅𝑄𝑥1,𝑥 − 𝑄𝜃1,𝜃 

−
1

𝑅
𝑤1,𝜃𝜃𝑁𝜃𝜃0 +

2

𝑅
𝑆2𝑤1,𝜃𝜃𝑣𝐻 − 2𝑆1𝑤1,𝑥𝑣𝑥  

+ 
1

𝑅
𝑤1,𝜃(2𝑆1𝑣𝐻,𝑥𝑣0,𝑥 + (𝑁𝑥

𝐻 − 𝑁𝑥
𝑇)𝑣0,𝑥𝑥) = 0 

𝑅𝑄𝑥1 − 𝑅𝑀𝑥𝑥1,𝑥 −𝑀𝑥𝜃1,𝜃 = 0  

𝑅𝑄𝜃1 − 𝑅𝑀𝑥𝜃1,𝑥 −𝑀𝜃𝜃1,𝜃 = 0 (18) 
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The terms by subscript ’0,' show equilibrium state and 

terms by subscript '1' refer to stability situation. 

Substituting Eq. (6) in Eq. (18) leads to stability 

equations in terms of displacement components is 

obtained. The critical temperature difference is defined 

as: 𝛥𝑇𝑐𝑟 = 𝑇𝑓 − 𝑇𝑖. 

𝑁𝑥𝜃0 = 𝑁𝜃𝜃0 = 0  

𝑁𝑥𝑥0 = 𝑁𝑥
𝐻 − 𝑁𝑥

𝑇 = 2𝑆1𝑉𝐻 − (𝐶11 + 𝑐12) = 2𝑆1𝑉𝐻 − 

             𝛽∆𝑇 

𝛽 = ∫ {𝑄11+𝑄12}𝛼(𝑥,𝜃)𝑑𝑧
ℎ
2

−ℎ
2

 
(19) 

       Solving the stability equations, simply support 

boundary conditions considered for edges 𝑥 = 0, 𝐿  ,
𝜃 = 0, 𝛼 of the open cylindrical shell and formulated as 
 

𝑣1 = 𝑤1 = 𝜑1 = 𝑀𝑥𝑥1 = 𝑁𝑥𝑥1 = 0    𝑎𝑡  𝑥 = 0, 𝐿  

𝑢1 = 𝑤1 = 𝜓1 = 𝑀𝜃𝜃1 = 𝑁𝜃𝜃1 = 0    𝑎𝑡  𝜃 = 0, 𝛼 (20) 
  

By substituting Eqs. (19) and (20) into Eq. (18), stability 

equations can be written as  

𝑅𝑁𝑥𝑥1,𝑥 + 𝑁𝑥𝜃1,𝜃 = 0  

𝑅𝑁𝑥𝜃1,𝑥 + 𝑁𝜃𝜃1,𝜃 + 𝑅(𝑁𝑥
𝐻 − 𝑁𝑥

𝑇)𝑉1,𝑥𝑥 = 0  

𝑁𝜃𝜃1 − 𝑅𝑊1,𝑥𝑥(𝑁𝑥
𝐻 −𝑁𝑥

𝑇)𝑄𝑥1,𝑥𝑄𝜃1,𝜃 +
2

𝑅
𝑆2𝑊1,𝜃𝜃𝑉𝐻 = 0 

𝑅𝑄𝑥1 − 𝑅 𝑀𝑥𝑥1,𝑥 −𝑀𝑥𝜃1,𝜃 = 0  

𝑅𝑄𝜃1 − 𝑅 𝑀𝑥𝜃1,𝑥 −𝑀𝜃𝜃1,𝜃 = 0 (21) 

       Force and moment resultants on the close vicinity 

of equilibrium according to Eq. (15) are defined as 

follow 

𝑁𝑥𝑥1 = 𝐴11𝑈1,𝑥 +
𝐴12

𝑅
(𝑊1 + 𝑉1,𝜃) + 𝐵11𝜓1,𝑥 +

𝐵12

𝑅
𝜑1,𝜃 

𝑁𝜃𝜃1 = 𝐴12𝑈1,𝑥 +
𝐴22

𝑅
𝑉1,𝜃+

𝐴22

𝑅
𝑊1+𝐵12𝜓1,𝑥 +

𝐵22

𝑅
𝜑1,𝜃 

𝑁𝑥𝜃1 = 𝐴66 (𝑉1,𝑥 +
1

𝑅
𝑈1,𝜃) +

𝐵66

2
(𝜑1,𝑥 +

1

𝑅
𝜓1,𝜃) 

𝑀𝑥𝑥1 = 𝐵11𝑈1,𝑥 +
𝐵12

𝑅
(𝑊1 + 𝑉1,𝜃) + 𝐷11𝜓1,𝑥 +

𝐷12

𝑅
𝜑1,𝜃 

𝑀𝜃𝜃1 = 𝐵12𝑈1,𝑥 +
𝐵22

𝑅
𝑉1,𝜃+

𝐴22

𝑅
𝑊1+𝐷12𝜓1,𝑥 +

𝐷22

𝑅
𝜑1,𝜃 

𝑀𝑥𝑥1 =
1

2
{𝐵66 (𝑉1,𝑥 +

1

𝑅
𝑈1,𝜃) +

𝐷66

2
(𝜑1,𝑥 +

1

𝑅
𝜓1,𝜃)} 

𝑄𝑥1 = 𝐴55(𝜓1 +𝑊1,𝑥) 

𝑄𝜃1 = 𝐴44 (𝜑1 +
1

𝑅
𝑊1,𝜃) (22) 

 

For simplify the coefficients in Eqs. (16), applying 

integrals, defined as follow 

𝐴12 = 𝐴21 = 𝐾2(𝑥, 𝜃)h 𝑆1 = 𝑞31 

𝐵11 = 𝐵12 = 𝐵22 = 𝐵66 = 0 𝑆2 = 𝑞32 

𝐴44 = 𝐴55 = 𝐴66 = 𝐾3(𝑥, 𝜃)h 𝐾1(𝑥, 𝜃) =
𝐸(𝑥,𝜃)

1−𝜐2
 

𝐴11 = 𝐴22 = 𝐾1(𝑥, 𝜃)h 𝐾2(𝑥, 𝜃) =
𝜈𝐸(𝑥,𝜃)

1−𝜐2
 

𝐷11 = 𝐷22 = 𝐾1(𝑥, 𝜃)
ℎ3

12
 𝐾3(𝑥, 𝜃) =

𝐸(𝑥,𝜃)

2(1+𝜈)
 

𝐷12 = 𝐷21 = 𝐾2(𝑥, 𝜃)
ℎ3

12
  

𝐷66 = 𝐾3(𝑥, 𝜃)
ℎ3

12
  

𝑁𝑥
𝐻 = 2𝑞31𝑉𝐻  

𝑁𝑥
𝑇 = (𝐾1(𝑥, 𝜃) + 𝐾2(𝑥, 𝜃))𝛼(𝑥, 𝜃)ℎΔ𝑇 

(23) 

 

3. Solution 

According to generalized differential quadrature 

method, mth order derivative of the solution function 

with respect to a space variable x, θ at a given grid point 

i can be approximated as follow [33] 

𝜕𝑚𝑓(𝑥𝑖 , 𝜃𝑗)

𝜕𝑥𝑚
=∑𝐴𝑖𝑛

(𝑚)𝑓(𝑥𝑛 , 𝜃𝑗)

𝑁𝑥

𝑛=1

    𝑖 = 1,2, . , 𝑁𝑥  , 𝑗 = 1,2, . , 𝑁𝜃 

𝜕𝑚𝑓(𝑥𝑖 , 𝜃𝑗)

𝜕𝜃𝑚
=∑𝐵𝑗𝑛

(𝑚)𝑓(𝑥𝑛 , 𝜃𝑗)

𝑁𝑥

𝑛=1

    i = 1,2, . , 𝑁𝑥 , 𝑗 = 1,2, . , 𝑁𝜃 

(24) 

       where 𝐴𝑖𝑗
(𝑚)

 is weight coefficients in x 

direction, 𝐵𝑗𝑛
(𝑚)

 is weight coefficients in 𝜃 direction, 𝑁𝑥 

and  𝑁𝜃 are the number of grid points in 𝑥, 𝜃 directions, 

respectively. The value of coefficients matrix is 

calculated according to the following equations [33, 34] 
 

𝐴𝑖𝑗
(1)
=

𝑀(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)𝑀(𝑥𝑗)
                 𝐹𝑜𝑟  𝑖 ≠ 𝑗  

𝐴𝑖𝑖
(1)
= −𝐴𝑖𝑗

(1)
  

𝑀(𝑥𝑖) ∏ (𝑥𝑖 − 𝑥𝑘)

𝑁

𝑘=1,𝑘≠𝑖

   
 

𝐴𝑖𝑗
(2)
= 2𝐴𝑖𝑗

(1)
[𝐴𝑖𝑖

(1)
−

1

𝑥𝑖−𝑥𝑗
]         𝐹𝑜𝑟  𝑖 ≠ 𝑗  

𝐴𝑖𝑖
(2)
= − ∑ 𝐴𝑖𝑗

(2)

𝑁

𝑗=1,𝑖≠𝑗

 

(25) 
 

Substituting Eqs. (25, 26) in Eq. (24) leads to 

𝑅
𝜕𝐾1(𝑥, 𝜃)

𝜕𝑥
ℎ∑𝐴𝑖𝑛

(1)𝑢𝑛𝑗 + 𝑅

𝑁𝑥

𝑛=1

𝐾1(𝑥, 𝜃)ℎ∑𝐴𝑖𝑛
(2)𝑢𝑛𝑗

𝑁𝑥

𝑛=1

 

+ℎ
𝜕𝐾2(𝑥, 𝜃)

𝜕𝑥
(𝑤𝑖𝑗 + ∑ 𝐵𝑗𝑚

(1)𝑣𝑖𝑚

𝑁𝜃

𝑚=1

)+ ℎ𝐾2(𝑥, 𝜃) 

(∑𝐴𝑖𝑛
(1)𝑤𝑛𝑗 +

𝑁𝑥

𝑛=1

∑∑𝐴𝑖𝑛
(1)𝐵𝑗𝑚

(1)𝑣𝑛𝑚

𝑁𝜃

𝑚=1

𝑁𝑥

𝑛=1

)+ ℎ
𝜕𝐾2(𝑥, 𝜃)

𝜕𝜃
 

(∑𝐴𝑖𝑛
(1)𝑣𝑛𝑗

𝑁𝑥

𝑛=1

+
1

𝑅
∑ 𝐵𝑗𝑚

(1)𝑢𝑖𝑚

𝑁𝜃

𝑚=1

)+ ℎ𝐾2(𝑥, 𝜃) 

(∑∑ 𝐴𝑖𝑛
(1)𝐵𝑗𝑚

(1)𝑣𝑛𝑚

𝑁𝜃

𝑚=1

𝑁𝑥

𝑛=1

+
1

𝑅
∑ 𝐵𝑗𝑚

(1)𝑢𝑖𝑚

𝑁𝜃

𝑚=1

) = 0 

𝑅ℎ
𝜕𝐾3(𝑥, 𝜃)

𝜕𝑥
(∑𝐴𝑖𝑛

(1)𝑣𝑛𝑗 +
1

𝑅
∑ 𝐵𝑗𝑚

(1)𝑢𝑖𝑚

𝑁𝜃

𝑚=1

𝑁𝑥

𝑛=1

) + 𝑅ℎ𝐾3(𝑥, 𝜃) 

(∑𝐴𝑖𝑛
(2)𝑣𝑛𝑗 +

1

𝑅
∑∑ 𝐴𝑖𝑛

(1)𝐵𝑗𝑚
(1)𝑢𝑛𝑚

𝑁𝜃

𝑚=1

𝑁𝑥

𝑛=1

𝑁𝑥

𝑛=1

)+ ℎ
𝜕𝐾2(𝑥, 𝜃)

𝜕𝜃
 

∑𝐴𝑖𝑛
(1)

𝑁𝑥

𝑛=1

𝑢𝑛𝑗 + ℎ𝐾2(𝑥, 𝜃)∑∑ 𝐴𝑖𝑛
(1)𝐵𝑗𝑚

(1)𝑢𝑛𝑚

𝑁𝜃

𝑚=1

𝑁𝑥

𝑛=1

+
ℎ

𝑅

𝜕𝐾2(𝑥, 𝜃)

𝜕𝜃
 

(𝑤𝑖𝑗 + ∑ 𝐵𝑗𝑚
(1)𝑣𝑖𝑚

𝑁𝜃

𝑚=1

)++2𝑅𝑞31𝑉𝐻∑𝐴𝑖𝑛
(2)𝑣𝑛𝑗

𝑁𝑥

𝑛=1

 

+
ℎ

𝑅
𝐾2(𝑥, 𝜃)(∑ 𝐵𝑗𝑚

(1)𝑤𝑖𝑚 + ∑ 𝐵𝑗𝑚
(2)𝑣𝑖𝑚

𝑁𝜃

𝑚=1

𝑁𝜃

𝑚=1

) 

−𝑅[𝐾1(𝑥, 𝜃) + 𝐾2(𝑥, 𝜃)]𝛼(𝑥, 𝜃)ℎ∆𝑇∑𝐴𝑖𝑛
(2)𝜐𝑛𝑗

𝑁𝑥

𝑛=1

= 0 
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ℎ𝐾2(𝑥, 𝜃)∑𝐴𝑖𝑛
(1)𝑢𝑛𝑗 +

ℎ

𝑅
𝐾1(𝑥, 𝜃)(𝑤𝑖𝑗 + ∑ 𝐵𝑗𝑚

(1)𝑣𝑖𝑚

𝑁𝜃

𝑚=1

)

𝑁𝑥

𝑛=1

 

+𝑅ℎ
𝜕𝐾3(𝑥, 𝜃)

𝜕𝑥
(𝜓𝑖𝑗 +∑𝐴𝑖𝑛

(1)𝑤𝑛𝑗

𝑁𝑥

𝑛=1

)+ 𝑅ℎ𝐾3(𝑥, 𝜃) 

(∑𝐴𝑖𝑛
(1)𝜓𝑛𝑗

𝑁𝑥

𝑛=1

+∑𝐴𝑖𝑛
(2)𝑤𝑛𝑗

𝑁𝑥

𝑛=1

)+ ℎ
𝜕𝐾3(𝑥, 𝜃)

𝜕𝜃
 

(𝜑𝑖𝑗 +
1

𝑅
∑ 𝐵𝑗𝑚

(1)𝑤𝑖𝑚

𝑁𝜃

𝑚=1

)+ ℎ𝐾3(𝑥, 𝜃) 

(∑ 𝐵𝑗𝑚
(1)𝜑𝑖𝑚 +

1

𝑅
∑ 𝐵𝑗𝑚

(2)𝑤𝑖𝑚

𝑁𝜃

𝑚=1

𝑁𝜃

𝑚=1

)+
2

𝑅
𝑞32𝑉𝐻 ∑𝐵𝑗𝑚

(2)𝑤𝑖𝑚

𝑁𝜃

𝑚=1

 

−2𝑅𝑞31𝑉𝐻∑𝐴𝑖𝑛
(2)𝑤𝑛𝑗

𝑁𝑥

𝑛=1

+ 𝑅[𝐾1(𝑥, 𝜃) + 𝐾2(𝑥, 𝜃)]𝛼(𝑥, 𝜃)ℎ∆𝑇 

∑𝐴𝑖𝑛
(2)𝑤𝑛𝑗

𝑁𝑥

𝑛=1

= 0 

𝑅ℎ𝐾3(𝑥, 𝜃)(𝜓𝑖𝑗 +∑𝐴𝑖𝑛
(1)𝑤𝑛𝑗

𝑁𝑥

𝑛=1

)− 𝑅
ℎ3

12

𝜕𝐾1(𝑥, 𝜃)

𝜕𝑥
∑𝐴𝑖𝑛

(1)𝜓𝑛𝑗

𝑁𝑥

𝑛=1

− 𝑅
ℎ3

12
𝐾1(𝑥, 𝜃)∑𝐴𝑖𝑛

(2)𝜓𝑛𝑗

𝑁𝑥

𝑛=1

−
ℎ3

12

𝜕𝐾1(𝑥, 𝜃)

𝜕𝑥

− 
ℎ3

12
𝐾2(𝑥, 𝜃)∑∑ 𝐴𝑖𝑛

(1)𝐵𝑗𝑚
(1)𝜑𝑛𝑚

𝑁𝜃

𝑚=1

𝑁𝑥

𝑛=1

−
ℎ3

24

𝜕𝐾3(𝑥, 𝜃)

𝜕𝜃
(∑𝐴𝑖𝑛

(1)𝜑𝑛𝑗

𝑁𝑥

𝑛=1

+
1

𝑅
∑ 𝐵𝑗𝑚

(1)𝜓𝑖𝑚

𝑁𝜃

𝑚=1

)

−
ℎ3

24
𝐾3(𝑥, 𝜃)(∑∑ 𝐴𝑖𝑛

(1)𝐵𝑗𝑚
(1)𝜑𝑛𝑚

𝑁𝜃

𝑚=1

𝑁𝑥

𝑛=1

 +
1

𝑅
∑ 𝐵𝑗𝑚

(2)𝜓𝑖𝑚

𝑁𝜃

𝑚=1

) = 0 

𝑅ℎ𝐾3(𝑥, 𝜃)(𝜑𝑖𝑗 +
1

𝑅
∑ 𝐵𝑗𝑚

(1)𝑤𝑖𝑚

𝑁𝜃

𝑚=1

)− 𝑅
ℎ3

24

𝜕𝐾1(𝑥, 𝜃)

𝜕𝑥
 

(∑𝐴𝑖𝑛
(1)

𝑁𝑥

𝑛=1

𝜑𝑛𝑗 +
1

𝑅
∑ 𝐵𝑗𝑚

(1)𝜓𝑖𝑚

𝑁𝜃

𝑚=1

)− 𝑅
ℎ3

24
𝐾3(𝑥, 𝜃)(∑𝐴𝑖𝑛

(2)𝜑𝑛𝑗

𝑁𝑥

𝑛=1

 

+
1

𝑅
∑ 𝐴𝑖𝑛

(1)𝐵𝑗𝑚
(1)𝜓𝑛𝑚

𝑁𝜃

𝑚=1

)−
ℎ3

12

𝜕𝐾1(𝑥, 𝜃)

𝜕𝜃
∑𝐴𝑖𝑛

(1)𝜓𝑛𝑗

𝑁𝑥

𝑛=1

 

−
ℎ3

12
𝐾2(𝑥, 𝜃)∑∑ 𝐴𝑖𝑛

(1)𝐵𝑗𝑚
(1)𝜓𝑛𝑚

𝑁𝜃

𝑚=1

−
ℎ3

12𝑅

𝑁𝑥

𝑛=1

𝜕𝐾1(𝑥, 𝜃)

𝜕𝜃
 

∑𝐵𝑗𝑚
(1)𝜑𝑖𝑚

𝑁𝜃

𝑚=1

−
ℎ3

12𝑅
𝐾1(𝑥, 𝜃)∑ 𝐵𝑗𝑚

(2)𝜑𝑖𝑚

𝑁𝜃

𝑚=1

= 0 

(26) 

       The Chebyshev – Gauss – Lobatto distribution is 

assumed, for which the coordinates of grid points along 

the reference surface are [33, 34] 
 

𝑥𝑖 =
𝐿

2
(1 − 𝑐𝑜𝑠

(𝑖 − 1)𝜋

𝑁𝑥 − 1
)           𝑓𝑜𝑟   𝑖 = 1,2,… , 𝑁𝑥 

𝜃𝑗 =
𝛼

2
(1 − 𝑐𝑜𝑠

(𝑗 − 1)𝜋

𝑁𝜃 − 1
)          𝑓𝑜𝑟   𝑗 = 1,2, … , 𝑁𝜃 

 (27) 

       The Chebyshev–Gauss–Lobatto sampling points 

rule guarantees convergence and efficiency to the GDQ 

technique. To  carry out the analysis and obtain critical 

temperature difference using eigenvalue method and 

GDQM, in the calculations, the domain and the 

boundary degrees of freedom are separated, and in 

vector forms they are denoted as (d) and (b), 

respectively. Based on this definition, equations can 

write as follow [33] 
 

{𝑥𝑑} = {{𝑢𝑑}, {𝑣𝑑}, {𝑤𝑑}, {𝜓𝑑}, {𝜑𝑑}}  

{𝑥𝑏} = {{𝑢𝑏}, {𝑣𝑏}, {𝑤𝑏}, {𝜓𝑏}, {𝜑𝑏}} (28) 
 

Introducing Eqs. (27) and (28) to Eq. (26), stability 

equations and the boundary conditions are as follow 

[𝐴𝑑𝑏]{𝑋𝑏} + [𝐴𝑑𝑑]{𝑋𝑑} = 0  

[𝐴𝑏𝑏]{𝑋𝑏} + [𝐴𝑏𝑑]{𝑋𝑑} = 0 (29) 
 

Where simplified as follow 
 

[
[𝐴𝑏𝑏] [𝐴𝑏𝑑]

[𝐴𝑑𝑏] [𝐴𝑑𝑑]
] {
{𝑋𝑏}

{𝑋𝑑}
} = 0 

(30) 

 

4. Results and discussion 

In order to obtain the critical temperature difference for 

a piezo-magnetic two dimensional functionally graded 

materials (2D-PFGM ) cylindrical panel subjected to 

magnetic field with simply supported boundary 

conditions (SSSS), GDQM was used in conjunction 

with a program being written in MATLAB. The 2D 

FGM cylindrical panel made of two metals and two 

ceramics include Nickel (Ni), stainless Steel, Silicon 

Nitride and Alumina whose material properties are 

given in Table 1 [34, 35]. To study the influence of 

uniform magnetic field on critical temperature buckling 

of the cylindrical panel, Cobalt Ferrite piezomagnetic 

fibers are distributed uniformly in longitudinal direction 

(x) through the FG matrix. Material properties of Cobalt 

Ferrite are given in Table 2. 
 

Table 1: Material properties of Constituents of the 2D-FGM 

cylindrical panel. 

α(1/℃) E (GPa) Material Constituents 

13.2e-6 204 Ni m1 

15.32e-6 207.79 Stainless steel m2 

7.4746e-6 322.27 Silicon nitride c1 

7.4e-6 380 Alumina c2 

 

Table 2: modulus of Piezomagnetic. 

Piezomagnetic constant (N/Am) Piezomagnetic 

q31=q32=580.3, q33=699.7, q24=q15=550 Cobalt Ferrite 

In order to demonstrate the accuracy of the present 

analysis, some illustrative examples are solved and the 

numerical results are compared with the data available 

in open literature. The comparison of critical 

temperature difference ΔTcr for the simply supported 

isotropic cylindrical panels with results reported in 

reference [13], are tabulated in Table 3. In this analysis, 

four different cylindrical shells made of various 

isotropic materials are considered whose material 

properties are given in Table 1. The geometrical 

parameters of cylindrical shells are: 𝐿/𝑅 = 0.8, 𝛼 =
360°. It can be observed from Table 3 that the present 
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results agreed well with results reported in reference 

[13]. 

Table 3: The convergence of the critical temperature 

difference of 2D-FG cylindrical shell. 

ΔTcr Number of nodes 

183.2926 7*7 

101.12 9*9 

102.8108 11*11 

100.5093 13*13 

100.5093 15*15 

100.142 17*17 

 

 

Table 4: Comparison of the critical temperature difference of 

open cylindrical shell ( 𝐿/𝑅 = 0.8, 𝛼 = 360°). 
Materials h/R present Ref. [8] 

Ni 0.008 
0.02 

0.05 

256.8651 
638.8089 

1564.40 

256.96 
642.42 

1606. 60 

Stainless steel 0.008 
0.02 

0.05 

221.3198 
550.4089 

1348.001 

221.409 
553.524 

1383.81 

Silicon nitride 0.008 

0.02 
0.05 

453.6189 

1128.10 
2762.80 

453.803 

1134.508 
2836.27 

Alumina 0.008 

0.02 
0.05 

458.1918 

1139.50 
2790.60 

458.3783 

1145.945 
2864.864 

 

       In Figs. 4 the effects of variation of central angle α 

of the cylindrical panel on critical temperature 

difference of the cylindrical panel for various values of 

external surface magnetic voltage VH is presented. The 

geometrical and material properties of 2D-PFGM 

cylindrical panel are as follow: ℎ/𝑅 = 0.02, 𝐿/𝑅 =
0.8, 𝑛𝜃 = 1, 𝑛𝑥 = 4 and VH = -300A, 0, 300A.  It can be 

observed from Figs. 4 for 𝛼 ≤70° the variation of 

critical temperature difference of the panel is regular 

and the increase of α yields decrease of the critical 

temperature difference ΔTcr, for 𝛼 ≥70°, as 𝛼 increase 

ΔTcr is reduced. Also for 𝛼 ≥70°, increase of surface 

magnetic voltage VH leads to increasing the critical 

temperature difference ΔTcr. Moreover, the slope of the 

curves for 𝛼 ≥190° reduced, i.e. the variation of ΔTcr 

versus 𝛼 is not very significant. 

Effect of the external surface magnetic voltage on 

the critical temperature difference of the 2D-PFGM 

cylindrical panel, for various values of thickness to 

radius ratio h/R, is depicted in Fig. 5. In this analysis 

geometrical and material properties of panel are: α =
100°, 𝐿/𝑅 = 0.8, 𝑛𝜃 = 1, 𝑛𝑥 = 3. Results of Fig. 8 

reveal variations of external surface magnetic voltage 

𝑉𝐻 have minor effects on the critical temperature 

difference ΔTcr.  

 

5. Conclusion 

In this paper, Magneto-Thermo-Elastic buckling 

analysis of a 2D PFGM open cylindrical shell subjected 

to magnetic field based on first order shear deformation 

theory is investigated. The constituent volume fraction 

is estimated through a volume fraction power-law. The 

material properties of the 2D FGM shell are assumed to 

vary through the longitudinal and circumferential 

directions according to a linear rule of mixtures. The 

nonlinear strain-displacement relations in cylindrical 

coordinates is considered. Total potential energy 

function for magneto-thermo-elastic loading is written. 

The variation method is applied to the total potential 

energy, and nonlinear stability equations of open shells 

are obtained. These equations are discretized by means 

of the generalized differential quadrature method 

(GDQM) to obtain critical temperature difference. 

Results are presented on the effect of applied voltage to 

the external surface of panel, and the central angle of the 

panel. Numerical comparisons is done by the result of 

an open literature for showing validity of the study. 

Good agreements show the accuracy of the present 

study. 
 

 

 
Fig. 4: Effect of central angel of the cylindrical panel on the 

critical buckling temperature. 
(ℎ/𝑅 = 0.02, 𝐿/𝑅 = 0.8, 𝑛𝜃 = 1, 𝑛𝑥 = 4) 

 

 

 
Fig. 8: Effect of external surface magnetic voltage VH on the 

critical buckling temperature of the cylindrical panel for 

different value of h/R (α = 100°, 𝐿/𝑅 = 0.8, 𝑛𝜃 = 1, 𝑛𝑥 = 3) 
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