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Abstract 

Linearization of nonlinear terms in momentum and 

energy equations is one of the challenging and 

important issues besides pressure-velocity coupling. To 

date, Picard method has been successfully applied to 

large range of problems of computational fluid 

dynamics for linearizing the advection terms. In many 

problems, one can use other methods such as Newton 

Raphson method to increase the rate of convergence 

and improve the convergence and stability behavior. 

This paper describes the development of two prior 

prominent finite volume Newton-Picard linearized 

solvers from 2D to 3D and in the foam-extend platform. 

These two solvers were developed and well matured 

and tested in literature for incompressible flows. The 

first solver uses Newton method for linearize the 

advection term of energy equation and the remaining 

terms of other equations were linearized using Picard 

method. The second solver linearize the convection 

term of momentum equation using Newton method and 

the remaining terms of other equations with Picard. The 

solvers are based on finite volume (FV) and uses the 

foam-extend libraries and some developed functions. 

The performance of solvers were evaluated and 

validated in 2D test cases and their capabilities and 

performances were shown in some 3D cases. In 3D 

cases, similar results with 2D were observed. Reducing 

the number of iterations and capability to increasing the 

courant number are of the main achievement and 

advantages of these solvers. 

Keywords: Newton method - FVM solvers - Advection 

convection linearization – rate of convergence. 

 

1. Introduction 

Linearization process for nonlinear system of equations 

is a common part in numerical simulation of most 

physical phenomena and engineering problems. In 

solving a fluid flow problem, it has always been a 

challenging issue in treating nonlinear advection terms 

in the NavierStokes or any other transport equations. 

It can be asserted that the main difference between 

various approaches of solving these equations is both 

the pressure-velocity coupling and the linearization of 

this particular nonlinear terms. Pressure-velocity 

coupling techniques, first developed on staggered grids 

by Patankar [1] and thereafter, successful attempts were 

made for its implementation on collocated grids, and to 

solve a variety of problems, [2]–[4].  In addition, implicit 

numerical algorithms and coupling procedures are well 

studied and developed to accelerate solution 

convergence and maintain its stability, [5]–[9]. Newton 

method has been employed for linearization of 

advection terms in several studies, [9]–[11]. Increasing 

the rate of solution convergence and maintaining 

numerical stability are the main objectives of these 

works. Vakilipour and Ormiston [9], implemented 

Newton method to linearize energy convection terms in 

a fully coupled finite volume algorithm. In comparison 

with Picard method, their results showed a significant 

increase of solution convergence rate for Newton 

method. Moreover, other studies confirmed that the 

Newton method for linearization of advection terms 

accelerates the solution convergence, [12, 13]. 

Mohammadi et al. [11], implemented a fully coupled 

algorithm together with fully implicit approach with 

Newton method on only momentum equation 

in two-dimensional and evaluated it on many test cases. 

A large increase in the rate of convergence and 

appropriate solution stability behavior were the results 

of this study.  

In present study, two mentioned and old 2D fully 

coupled solvers, presented in [9] and [11], were 

implemented and developed to 3D solvers, using foam-

extend, an open source object oriented C++ library for 

computational continuum mechanics. In this regard, the 

continuity, momentum, and temperature equations are 

implicitly discretized and results in a fully coupled 

system of linear equation. In all solvers, the buoyancy 

force term is modeled by the Boussinesq approximation 

and also, the associating temperature field is implicitly 

encountered in the momentum equations. Moreover, the 

full Picard solver encounters coupled implicit 

temperature field in the momentum equations, and is an 

extension of transientFoam solver of foam-extend 

and were used to compare two developed solvers. In full 

Picard solver, nonlinear advection terms in momentum 

and energy equations are linearized using the Picard 

method. In energy Newton solver, Newton method 

is employed to linearize advection term in energy 

equation, which its algorithm was developed, studied, 

and presented by Vakilipour and Ormiston [9]. The 

momentum Newton solver utilizes Newton method to 

linearize the momentum advection terms and its 

algorithm was developed and presented by Mohammadi 

et al..[11]. The computational performance and 
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behavior of the previously developed solvers are 

evaluated by solving some test cases. 

 

2. Governing Equations 

The governing equations for continuity, momentum and 

energy are given by: 

∇. (𝜌𝐮) = 0 (1) 
𝜕(𝜌𝐮)

𝜕𝑡
+ ∇. (𝜌𝐮𝐮)

= −∇𝑝 + ∇. (𝜇∇𝐮)

+ 𝐠𝛽(𝑇 − 𝑇𝑟𝑒𝑓) 

(2) 

𝜕(𝜌𝑇)

𝜕𝑡
+ ∇. (𝜌𝐮𝑇) = ∇. (α∇𝑇) (3) 

 

Where 𝜌, u, p, T, 𝜇, 𝛼, 𝛽, g, 𝑇𝑟𝑒𝑓  are the fluid density, 

velocity vector, pressure, temperature, fluid viscosity, 

thermal diffusivity, thermal expansion coefficient, 

gravitational acceleration vector, and a reference 

temperature, respectively. In Eq. (2), Boussinesq 

approximation is employed to model the buoyancy force 

term. 

 

2.1. Buoyancy term 

The buoyancy term in Eq. (2), is a linear function of 

temperature and considered as a source for coupling 

the momentum and energy equations. The buoyancy 

term can be divided in two different parts; variable 

and constant. 

𝐠𝛽(𝑇 − 𝑇𝑟𝑒𝑓) = 𝐠𝛽𝑇 − 𝐠𝛽𝑇𝑟𝑒𝑓  (4) 

The first part is treated implicitly and changes diagonal 

elements of the coefficient matrix. The second part is 

incorporated into the RHS of the system of linear 

equations. 

 

2.2. Newton Method 

Newton method is categorized into the high order 

linearization methods while the Picard is a first order 

method to linearize nonlinear terms. In general, 

advection terms in a conservation equation are 

candidates for linearization either by Picard or Newton 

method [9]–[11]. To employ Newton method, an 

advection term is approximated using values calculated 

at previous iteration given by. 

�̇�𝑓𝜙𝑓 ≈ �̇�𝑓
𝑘𝜙𝑓 + �̇�𝑓𝜙𝑓

𝑘 − �̇�𝑓
𝑘𝜙𝑓

𝑘 (5) 

Where superscript k denotes previous iteration and an 

implicit variable is not denoted with a superscript. 

On the other hand, the Picard linearization method is 

implemented by. 

�̇�𝑓𝜙𝑓 ≈ �̇�𝑓
𝑘𝜙𝑓 (6) 

 

2.3. The Coupling 

Coupled solvers have been developed in foam-extend 

using block matrix manipulation and presented 

in several studies, [5]–[9, 11], And in pressure-based 

finite volume methods, Rhie-Chow scheme has been 

widely employed to link pressure and velocity fields 

[2,3,5,7]–[9,11,14]. For the developed solvers, the 

coefficient block matrix system and solution vector can 

be presented as follows. 

[

[Block]𝑃𝑖 [Block]𝑁𝑖 ⋯

⋮ [Block]𝑃𝑗 ⋯

⋮ ⋮ ⋱

] [

[Solution Vector]𝑖

[Solution Vector]𝑗

⋮

]

= [

[Source]𝑖

[Source]𝑗

⋮

] 

(7) 

  

Where P and N denotes for any present and neighbor 

cells, respectively. The Solution Vector contains five 

variables and Source stands for RHS vectors in the 

discretized equations of a present cell. Subscripts i and j 

are the dummy indices over all domain cells and their 

neighbors, respectively. 

 

3. Implementation using foam-extend 

In order to implement the previous steps using foam-

extend, various functions have been used. Some of 

prominent and created functions are described as 

follows. 

 For assembling the diagonal contributions of buoyant 

term, the following function has been used: 
insertEquationCoupling() 

And for assembling the constant part of the buoyant 

term, the following syntaxes were used: 
 fvVectorMatrix UEqn 

 ( 

   … 

   == 

   g*beta*Tref 

 ) 

Where the UEqn is an object of fvVectorMatrix 

class which contains the discretization operators and 

functions for performing momentum equation 

discretization and matrix manipulations. 

The following syntax is used for generating coefficients 

of first implicit term of Newton linearization method: 

 fvm::div(phi,𝜙) 

Where the fvm is a name space in foam-extend for 

implicit functions and operators and the div is function 

name for divergence terms. 

Coefficients of second implicit part of Newton 

method were generated by multiplying the continuity 

equation coefficients and the desired face value. The 

face values were calculated by identical upwind scheme 

employed for the dependent variable in associating 

equation of momentum and energy. To perform this face 

value, one function operator is added using foam-extend 

as follow: 
 fvc::fluxUnit() 

This fluxUnit() function is an extension of 

flux()function in original foam-extend-5.0, for 

calculating the face values. 
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The explicit (third term) part of Newton method 

were handled using the following syntax: 

 fvc::div(phi,𝜙) 

Where fvc is a name space for explicit functions and 

operators. 

Finally to creating the block matrix system for 

system of desired equations, a solution vector with 5 

variables (3 velocity components, pressure and 

temperature) were used. In foam-extend the vector2, 

vector3, vector4, vector6, and vector8 are 

available for solution vectors with 2, 3, 4, 6, and 8 

variables. In present work, the vector5 is created and 

used in all the intended solvers for managing 5 

mentioned variables. 

 

3.1. Momentum Newton Solver 

In momentum Newton solvers linearized advection 

terms of momentum and energy equations is presented 

as: 

�̇�𝑘𝐮 + �̇�𝐮𝑘 − �̇�𝑘𝐮𝑘 (6) 

�̇�𝑘𝑇 (7) 

The associated procedure and included headers 

were for the first mentioned solver with momentum 

Newton linearized and energy Picard linearized is as 

follows: 
  fvBlockMatrix<vector5> UpTEqn(UpT); 

  #include “UEqn.H” 

  #include “pEqn.H” 

  #include “TEqn.H” 

  #include “UEqnNl.H” 

  #include “CouplingTerms.H” 

Where UpTEqn is an object of fvBlockMatrix class 

for creating a block matrix system. UEqn, pEqn, TEqn, 

UEqnNl and CouplingTerms, are headers for 

managing momentum, continuity, energy, momentum 

Newton terms, and coupling terms respectively. 

 

3.2. Energy Newton Solver 

Also, in momentum Newton solvers linearized 

advection terms of momentum and energy equations is 

presented as: 

�̇�𝑘𝐮 (8) 

�̇�𝑘𝑇 + �̇�𝑇𝑘 − �̇�𝑘𝑇𝑘 (9) 

 

And the procedures or headers of second solver 

with momentum Picard linearized and energy Newton 

linearized is presented below: 
  fvBlockMatrix<vector5> UpTEqn(UpT); 

  #include “UEqn.H” 

  #include “pEqn.H” 

  #include “TEqn.H” 

  #include “TEqnNl.H” 

  #include “CouplingTerms.H” 

Where TEqnNl is header file for Newton terms of 

energy equation. 

 

4. Results and Discussion 

The developed solvers are employed to solve a number 

of benchmark flow problems and obtained numerical 

solutions are assessed from the accuracy and 

convergence viewpoints. The test flow problems are 

solved on non-orthogonal grids at selected Reynolds 

and Richardson numbers which provides reasonable 

comparisons between computational performance of 

developed solvers in numerical simulation of test cases 

with acceptable physical and geometrical complexity. 
The Reynolds and Richardson numbers are selected in 

the ranges of up to 10000 and 0.1 to 10 respectively. A 

relative difference (RD) is defined to compare the 

numerical solutions given by: 

𝑅𝐷(𝜙) = |
𝜙𝑗 − 𝜙𝑗−1

𝜙𝑗−1

| × 100 (10) 

Where, 𝜙j and 𝜙j-1 are the flow variables calculated on 

a grid and one level coarser, respectively. 

 

4.1. Cavity with Buoyant Force 

The first case, is a cavity with buoyant force to examine 

the solvers capabilities in solving the simple natural 

convection problem. The flow domain is a 2D cavity 

with a grid with 80×80 non-uniform cells and with 

vertical isothermal wall and horizontal adiabatic walls, 

described by [15], as shown in Fig. 1. 

 

 

 

 

 

Fig. 1: Representation of non-uniform grid arrangement with 

boundary conditions 

 

The Prandtl and Rayleigh numbers are defined as. 

  

𝑃𝑟 = (𝜐/𝛼) (11) 

𝑅𝑎 = (
𝐠 𝛽 Δ𝑇 𝐻3

𝜐2
) 𝑃𝑟 

(12) 

Where, 𝜐, 𝛼 and 𝐻 are momentum diffusivity, thermal 

diffusivity and length scale, respectively. The interior 

of the cavity is filled with air, temperature difference is 

set to be 20 K between vertical walls, and the reference 

temperature has been set to 293 K. 

Temperature distribution is consistent with the 

literature results and presented in Fig. 2.  
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Fig. 2: Temperature distribution for cavity. 

 

Also the similarity between the main structures is clear 

and presented in Fig. 3. 

(a)

 

(b)

 
(c)

 

(d)

 
 

Fig. 3: The main structures a) Present study, Ra=105  

b) Barakos et al. Ra=105. c) Present study, Ra=107  

d) Barakos et al. Ra=107 . 

 

 Figure 4 shows the rate of convergence of mentioned 

solvers.  

 
Fig. 4: Rate of convergence for 2D cavity at 𝑅𝑎 = 109. 

As can be seen from the Fig. 4, the solvers have better 

convergence rate than the full Picard solver. 

 

4.2. Annulus  

The annulus test case, is another case for examining the 

solvers to solve the natural convection problem in non-

orthogonal grids, described in [9]. The domain and the 

discretization grid is presented at Fig. 5.  
 

 
 

 

Fig. 5: a) Representation of annulus with boundary 

conditions and non-uniform, non-orthogonal grid. 

 

Temperature difference, Prandtl number, Rayleigh 

number, and (𝑟𝑜/𝑟𝑖) ratio have been set to 20 K, 0.71, 

4.7×104, and 2.6 respectively. The temperature profiles 

at various angles are depicted in Fig. 6.  

 

 
Fig. 6: Temperature profiles at various angles in comparison 

with Vakilipour,Ormiston [9]. 

 

A perfect match have been observed between the 

temperature profiles at Fig. 6, and also the resulted 

stream lines, presented in Fig. 7. 
(a) (b) 
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Fig. 7: Stream lines, left) Vakilipour, Ormiston right) Present 

study. 

 

The rate of convergence in comparison with the full 

Picard solver is demonstrated at Fig. 8. 

 
Fig. 8: Rate of convergence of mentioned solvers for annulus 

test case. 

 

4.3. Rotating Cylinder in Cubical Cavity  

The capability of momentum and energy Newton 

linearized solvers in problems are also clearly can be 

seen. The rotating cylinder in cubical cavity is the test 

case with non-orthogonal non-uniform grids. The 

domain is a cube with two isothermal (with top moving 

wall) and other full adiabatic outer walls and a rotating 

cylinder inside, which shown in Fig. 9. 

 
Fig. 9: Rotating cylinder in cubical cavity domain and grid. 

 

The temperature difference and desired properties were 

set like the 2D cavity case and for simplicity have not 

been repeated. In present work, the flow computations 

is carried out at Reynolds numbers of 100 and 

Richardson numbers of 1. The rotating dimensionless 

velocity is defined as Ω = (𝜔𝐷)/(2𝐮) and set to be 1, 

where 𝜔 is the angular velocity. The resulted velocity 

profile is consistent with literature [16], depicted at Fig. 

10. 

 
Fig. 10: Velocity along vertical line at 𝑥 = 0.25 in 

comparison with Chatterjee et al. [16]. 

 

Major structures with temperature distribution is shown 

in Fig. 11. 

 
Fig. 11: Major flow structures with temperature distribution 

for Re, Ri, and Ω equal to 100, 1 and 1, respectively. 

 

Finally, their capabilities in convergence behavior can 

be presented as Fig. 12. 
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Fig. 12: Convergence rate behavior of the solvers. 

 

As can be seen from the Fig. 12, the convergence rate of 

two developed Newton solvers are better than the Picard 

one, and the energy Newton solver, has better 

convergence rate in mixed convection flows. 
 

5. Concluding Remarks 

In present study, two coupled solvers previously 

developed using Newton method and introduced by 

Vakilipour and Ormiston [9] and Mohammadi et al. 

[11] were extended for 3D mixed convection flow 

calculations. The foam-extend libraries were employed 

to developed the Newton coupled solvers. The 

computational performance and capability of two 

developed solvers were investigated by numerical 

experiments performed for simulation of 2D and 3D 

natural and mixed convection flows. The following 

conclusions are given demonstrating the computational 

performance of developed solvers provided by the 

Newton method: 

1. High convergence rate for natural and mixed 

convection flows is the first clear result in comparison 

with full Picard method.  

2. Energy Newton solver has better convergence 

rate than the momentum Newton solver in flows with 

high Richardson numbers. 

3. Newton method has its advantages either in 

uniform or non-uniform, orthogonal or non-orthogonal, 

and 2D or 3D grids. 

4. Depending on Re, Ri or other flow and physical 

specifications, Newton method can reduce the number 

of iterations, even up to 4 to times.  
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