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Abstract 
Quadrators have become one of the most widely used 
UAV (Unmanned Aerial Vehicle) robots due to their 
simple mechanical structure and high maneuverability. 
But due to their low cargo capacity, they are limited in 
some applications. In the model of this research, to 
increase the cargo capacity of the drone, two coaxial 
propellers with constant speed and opposite direction of 
rotation have been added to the center of the quadrator. 
The drone dynamic modeling has been done by Newton 
- Euler method and the obtained equations are non-
linear, under-excited, coupled and unstable. To control 
the vertical flight, the backstepping control method 
which has a high ability to control nonlinear systems, 
has been used. The control system and the drone have 
been simulated in MATLAB software and the 
simulation results show that the designed controller 
displays a desirable behavior in vertical flight 
controlling. 
Keywords: Six-blade vertical flying robot - Unmanned 
Aerial Vehicle - backstepping control. 

 
1. Introduction 
In recent decades, in robotics fields, many automatic 
and remote control devices have been developed. Also, 
there is a growing interest in the development of vertical 
flying unmanned aerial vehicles with various 
capabilities. Because of the numerous advantages, the 
developing of these drones have expanded. 
Reconnaissance missions, photo shoot, oil and 
electricity transmission line inspection, fire detection, 
using in dangerous and inaccessible environments, 
monitoring of agricultural and forestry borders can be 
mentioned among the applications [1]. Quadrator is 
considered as the vertical flying unmanned aerial 
vehicles. These types of drones can be remotely 
controlled or be self-driving. Cargo capacity, simplicity 
of the device structure, high maneuverability, low 
maintenance cost are among the advantages of using 
these robots. The low flight persistence of the quadrator 
is the only aspect that makes that weak compared to 
other flying robots. Due to the need for electrical energy 
to run four motors and the limitation of the energy 
source, these types of robots have a short flight time.  
Also, the vertical flying system of quadrator is a 
completely unstable system, that's why its control is 
very important. Optimal control of the robot makes the 
system stable, prevents the drone from falling, 
maintains the balance of the system and also controls the 

drone position during the flight. In the status control, the 
speed of the motors is adjusted to reach the desired 
angles and altitude. The stability of the flying robot is 
very important to perform a successful maneuver. 

Various works have been done in the field of quadrator 
control. Among other things, in [2], the quadrator 
motion equations have been extracted and in [3], the 
effect of aerodynamic forces in quadrature modeling has 
been analyzed. Also, various non-linear control methods 
including feedback linearization with structures 
including cascade and higher order derivatives [4, 5] , 
sliding mode control method [6], use of adaptive 
methods [7], in [8, 9], Lyapunov theory  is used to 
ensure the asymptotic stability of the system. In [10], the 
position tracking and the direction of these systems has 
been analyzed by using hybrid control. Very low cargo 
capacity is one of the main disadvantages of the 
quadrator; to solve this problem, four rotors out of six 
have been used symmetrically [11] or eight rotors [12] 
have been used. Increasing weight of drone and 
complicated control are the disadvantages of these 
structures. Adding two motors to the center of the 
quadrator, not only increases the cargo capacity, but also 
increases its resistance to crosswinds. The running of 
these central rotors with a specific moment of inertia 
acts like a gyroscope and resists the horizontal rotations 
of the robot. In order to keep the structure of the drone 
simple, the central rotors have no speed feedback and 
their speed is determined as an open circuit based on the 
weight of the drone and remains constant during its 
movement. Figure 1 shows a six-blade vertical flight 
robot with a new structure including two concentric 
rotors in the center of the robot. 

 
Figure 1. Six-blade vertical flight robot with a new 

structure 
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In the second part of this article, the dynamic model of 
the under research drone has been extracted by using 
Newton's method. In the third part, the control system is 
designed using the backstepping method. In the fourth 
part, the results of the simulation of the control system 
have been evaluated and analyzed, then the tracking of 
the system in following different routes has been tested. 
In the fifth section, the conclusion is given. 
 
2. Dynamic modeling 
Basically, Newton-Euler and Euler-Lagrange methods 
are used to express the dynamic model, in this article, 
Euler-Newton method is used. 
 
2.1. Dynamic of six-blade drone 
The vertical flight drone of this research has six rotors 
which fours are symmetrically installed around the 
drone and a pair of coaxial rotors with larger blades are 
installed in the center of the drone (see Figure 1). 
Coaxial rotors have a constant and similar speed and 
basically have no role in controlling the drone, but have 
been used in order to increase drone cargo capacity. To 
cancel each other’s aerodynamic effect and maintain 
system balance, the rotating direction of these two rotors 
is considered to be opposite. Peripheral rotors are 
responsible for preparing desired movements in the 
drone, in fact, the speed of these rotors is the input of 
the system. 

The six-blade robot has six degrees of freedom in 
space, three of them are related to the angles for the 
rotational position and three of which are related to the 
translational movement of the robot. In order to 
determine the rotational situation of the drone, body and 
ground coordinate systems are employed. The body 
coordinate system is fixed on the center of mass of the 
robot and the ground coordinate system is fixed on the 
ground. In the employed systems, the XY plane is 
aligned with the horizon and the Z axis is placed 
perpendicular to it and against the gravity of the earth. 
Also, the center of the body coordinate system is 
considered to be the center of the robot mass. The body 
coordinate system is in such a way that the X axis is 
aligned with the connecting axis of rotors 1 and 3 and 
the Y axis is aligned with the connecting axis of rotors 
2 and 4. The Z axis is perpendicular to the X axis and 
the Y axis, and its direction is determined using the 
right-hand rule. In this drone, each rotor creates a certain 
torque around its rotation center, the used blades aren’t 
similar and are divided into two groups, right-handed 
and left-handed, which rotate in opposite directions. The 
same torques of these rotors will lead to the stability of 
the flying robot around the center of gravity. To make 
transitional movement, the drone leans towards the rotor 
with a lower rotation speed and causes the thrust force 
to find a component in that direction. There is coupling 
in the structure of the robot, which means that the robot 
cannot have a translational movement without having a 
roll or screw movement, and this factor allows us to 
control six degrees of freedom degree with four inputs. 
 

2.2. Derivation of equations 
 
In this section, kinematic and dynamic equations are 
extracted with the following assumptions: [13] 

• The center of the mass and the origin of the 
body coordinate system should be same. 

• Its geometric and mass structure is assumed to 
be symmetrical 

• The axes of the body coordinate system 
connected to the vertical flight are assumed to 
be parallel to the ground coordinate system 
axes, in this case the moment of inertia matrix 
is diagonal and makes the equations simpler. 

Due to the rotation of each propeller, the thrust force 
equals to 𝐹𝐹 = 𝐾𝐾𝑡𝑡Ω2  and the drag torque equals to 𝐷𝐷 =
𝐾𝐾𝑑𝑑Ω2 be created which 𝐾𝐾𝑡𝑡 is called thrust coefficient and 
𝐾𝐾𝑑𝑑 is called drag coefficient.  Due to the same rotation 
speed and opposite direction of rotation, coaxial rotors 
neutralize each other's drag torque, but their thrust force 
is upward and they gather together. The resultant of the 
force and the torque around the center of mass resulting 
from the rotation of the rotors are according to equations 
(1) to (4): 

)1( T = 𝑇𝑇1  +  𝑇𝑇2  +  𝑇𝑇3 + 𝑇𝑇4
= 𝐾𝐾𝑡𝑡(Ω12 + Ω22 + Ω32 + Ω42)
+ 𝐾𝐾′𝑡𝑡(Ω52 + Ω62) 

)2( 𝜏𝜏𝑥𝑥 = 𝐾𝐾𝑡𝑡𝑙𝑙(Ω22 − Ω42) 
)3( 𝜏𝜏𝑥𝑥 = 𝐾𝐾𝑡𝑡𝑙𝑙(Ω32 − Ω12) 
)4( 𝜏𝜏𝑧𝑧 = 𝐾𝐾𝑑𝑑(Ω12 − Ω22 + Ω32 − Ω42) 

 

In the above equations, T is called the total thrust force, 
𝜏𝜏𝑥𝑥 is called roll torque, 𝜏𝜏𝑦𝑦 is called pitch torque and 𝜏𝜏𝑧𝑧 is 
yaw torque. 
 
2.3. Derivation of dynamic equations 
 
In Figure 2, the fixed coordinate system of the ground is 
shown with E and the coordinate system connected to 
the center of the robot mass is shown with B. The 
rotational transformation matrix of the body coordinate 
system compared to the inertial coordinate system by 
considering three consecutive cycles in terms of Euler 
angles with the rotation order of 𝜑𝜑 → 𝜃𝜃 → 𝜓𝜓  is as 
follows: 

 
 
)5( 

𝑅𝑅(𝜓𝜓,𝜃𝜃,𝜑𝜑) =  𝑅𝑅(𝑥𝑥,𝜑𝜑).𝑅𝑅(𝑦𝑦,𝜃𝜃).𝑅𝑅(𝑧𝑧,𝜓𝜓)

= �
𝑐𝑐𝜓𝜓𝑐𝑐𝜃𝜃 𝑠𝑠𝜓𝜓𝑐𝑐𝜑𝜑 +  𝑐𝑐𝜓𝜓𝑠𝑠𝜃𝜃𝑠𝑠𝜑𝜑 𝑠𝑠𝜓𝜓𝑠𝑠𝜑𝜑 −  𝑐𝑐𝜓𝜓𝑠𝑠𝜃𝜃𝑐𝑐𝜑𝜑
−𝑠𝑠𝜓𝜓𝑐𝑐𝜃𝜃 𝑐𝑐𝜓𝜓𝑐𝑐𝜑𝜑 −  𝑠𝑠𝜓𝜓𝑠𝑠𝜃𝜃𝑠𝑠𝜑𝜑 𝑐𝑐𝜓𝜓𝑠𝑠𝜑𝜑 +  𝑠𝑠𝜓𝜓𝑠𝑠𝜃𝜃𝑐𝑐𝜑𝜑
−𝑠𝑠𝜃𝜃 −𝑐𝑐𝜃𝜃𝑠𝑠𝜑𝜑 𝑐𝑐𝜃𝜃𝑐𝑐𝜑𝜑

� 

In above matrix, c and s are respectively abbreviations 
of cos and sin. The above rotation matrix is orthogonal. 
Also, the angular speed of the object in the body 
coordinate system can be obtained using equation (6) in 
terms of the rate of Euler angles [14]. 
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Figure 2. The six-blade robot configuration with roll-

pitch-yaw Euler angles 

 
)6( 𝜔𝜔𝐵𝐵 = �

𝑝𝑝
𝑞𝑞
𝑟𝑟
� = �

1 0 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃
0 𝑐𝑐𝑐𝑐𝑠𝑠𝜑𝜑 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑
0 −𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑐𝑐𝑐𝑐𝑠𝑠𝜑𝜑

�× �
�̇�𝜑
�̇�𝜃
�̇�𝜓
� 

Translational motion equations based on Newton's laws 
in the ground coordinate system are according to 
equation (7) that 𝑘𝑘𝑓𝑓𝑡𝑡 is air coefficient. 

 
 
)7( 

  

𝑚𝑚𝑡𝑡 . 𝑎𝑎𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑥𝑥𝑡𝑡𝐸𝐸  

�
�̈�𝑋
�̈�𝑌
�̈�𝑍
� =

1
𝑚𝑚𝑡𝑡

�
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 − 𝑘𝑘𝑓𝑓𝑡𝑡�̇�𝑋2

−𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 − 𝑘𝑘𝑓𝑓𝑡𝑡�̇�𝑌2

𝑇𝑇𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑐𝑐𝑐𝑐𝑠𝑠 𝜑𝜑 −𝑚𝑚𝑡𝑡 𝑔𝑔 − 𝑘𝑘𝑓𝑓𝑡𝑡�̇�𝑍2
� 

The external forces in the above equation include the 
weight force, the thrust force of the propellers and the 
aerodynamic forces acting on the drone body. 

According to Newton-Euler laws, the equation of 
angular motion for a system consisting of several 
connected moving masses is according to equation (8). 

 
 
)8( 

       𝛴𝛴𝛴𝛴𝐺𝐺 = �  �𝐻𝐻 ̇ 𝑖𝑖 + 𝑅𝑅𝑂𝑂𝑂𝑂
𝐺𝐺

× 𝑚𝑚𝑖𝑖𝑎𝑎𝑜𝑜�
4

𝑖𝑖

 

           = �� 
𝛿𝛿𝐻𝐻𝑖𝑖
𝛿𝛿𝛿𝛿 + 𝜔𝜔𝑖𝑖

𝐵𝐵 × 𝐻𝐻𝑖𝑖 +  𝑅𝑅𝑂𝑂𝑂𝑂
𝐺𝐺

× 𝑚𝑚𝑖𝑖𝑎𝑎𝑜𝑜𝑖𝑖�
4

𝑖𝑖 

 

In above equation, G point is the center of mass of the 
system and Oi points are also assumed as the center of 
mass of each of the moving objects. H is the angular 
momentum vector of each object around its center of 
mass, and 𝑅𝑅𝑂𝑂𝑂𝑂

𝐺𝐺
 is the distance from the center of mass of 

each object to the center of mass of the entire system. 
𝑎𝑎𝑜𝑜𝑖𝑖  is the acceleration of the center of mass of each 
moving object. The left side of equation (8) is the 
resultant of external torques around the center of mass 
of the system. These torques include equations (2) to (4) 
and are aerodynamic torques acting to the whole system. 
The right side of that is the angular momentum changes 
of each component around the center of mass of the 
system. By calculating each term of equation (8) in the 
body coordinate system, physical device, the final 
equations are obtained according to the equation (9). 

 
)9( �

�̇�𝑝
�̇�𝑞
�̇�𝑟
� = �

(�𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧�𝑞𝑞𝑟𝑟 − 𝐽𝐽𝑧𝑧𝑞𝑞Ω + 𝜏𝜏𝑥𝑥 − 𝑘𝑘𝑓𝑓𝑝𝑝)/𝐼𝐼𝑥𝑥
((𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)𝑝𝑝𝑟𝑟 − 𝐽𝐽𝑧𝑧𝑝𝑝Ω + 𝜏𝜏𝑦𝑦 − 𝑘𝑘𝑓𝑓𝑞𝑞)/𝐼𝐼𝑦𝑦
(�𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦�𝑞𝑞𝑝𝑝 − 𝐽𝐽𝑧𝑧Ω̇ + 𝜏𝜏𝑧𝑧 − 𝑘𝑘𝑓𝑓𝑟𝑟)/𝐼𝐼𝑧𝑧

� 

In the above relationship, 𝑘𝑘𝑓𝑓  is the coefficient of air 
friction against the rotational movement and Ω = Ω𝟏𝟏 −
Ω𝟐𝟐 + Ω𝟑𝟑 − Ω𝟒𝟒   is the algebraic sum of the speed of the 
rotors and Ω ̇ is the algebraic sum of the acceleration of 
the rotors. 𝐽𝐽𝑧𝑧𝑞𝑞Ω and 𝐽𝐽𝑧𝑧𝑝𝑝Ω are the gyroscopic moments of 
the rotors. 

Assuming the Euler angles to be small, it can be seen 
from equation (6) that the angular speed of the drone in 
the body coordinate system is equal to the rate of Euler 
angles [15]. Also, aerodynamic effects have been 
ignored in the equations. Therefore, according to the 
proposed assumptions, the dynamic equations of the 
robot are obtained according to the following equations. 

)10( 
)11( 
 
)12( 
)13( 
 
)14( 
)15( ⎩

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧       𝑚𝑚�̈�𝑋 = 𝑢𝑢1 sin𝜃𝜃                                            

𝑚𝑚�̈�𝑌 = −𝑢𝑢1 sin𝜑𝜑 cos 𝜃𝜃                        

𝑚𝑚�̈�𝑍 = 𝑢𝑢1 cos𝜑𝜑 cos 𝜃𝜃 − 𝑚𝑚𝑔𝑔              

 𝐼𝐼𝑥𝑥�̈�𝛷 = (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝛹�̇�𝜃 − 𝐽𝐽𝑧𝑧�̇�𝜃Ω + 𝑢𝑢2 

𝐼𝐼𝑦𝑦�̈�𝜃 = (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)𝐵𝐵1�̇�𝛹�̇�𝜙 + 𝐽𝐽𝑧𝑧�̇�𝜙Ω+ 𝑢𝑢3

𝐼𝐼𝑧𝑧�̈�𝛹 = (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜙�̇�𝜃 − 𝐽𝐽𝑧𝑧Ω̇ + 𝑢𝑢4                      

 

In the above equations, 𝑢𝑢1 to 𝑢𝑢4 are control inputs and 
are defined as [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4] = [𝑇𝑇,𝜑𝜑,𝜃𝜃,𝜓𝜓]. Also, in order 
to avoid the singularity, it is assumed that the yaw and 
pitch angles are in the (−π

2
, π
2
)   interval. 

 
3. Designing Controller 
The backstepping method was first introduced in 1990 
as a recursive Lyapunov method. The reason behind the 
backstepping name for this method comes from the fact 
that during the design process, the designer goes back 
one step from the scalar equation that is the farthest from 
the control input (in terms of the number of integration) 
to this control input, and repeated as a recursive process. 
Due to the underexcitation of the system in this strategy, 
a control loop for translational dynamics and a control 
loop for rotational dynamics are designed with a 
sequential structure. Figure 3 shows the two-stage 
cascade control diagram. The translational control loop 
will generate the 𝑢𝑢1 input and desired angles 𝜑𝜑𝑑𝑑 and 𝜃𝜃𝑑𝑑 
such that the 𝑋𝑋𝑑𝑑 , 𝑌𝑌𝑑𝑑  and 𝑍𝑍𝑑𝑑  route are tracked by the 
output. The rotational control loop which is responsible 
for the stabilization of the drone, generates control 
signals 𝑢𝑢2  to 𝑢𝑢4  for converging the drone angles to 
desired values of 𝜑𝜑𝑑𝑑 , 𝜃𝜃𝑑𝑑  and 𝜓𝜓𝑑𝑑 . The closed loop 
stability of such structure has been shown in [16]. 

In this section, the backstepping method to control the 
position of the six-blade robot is presented. In the 
backstepping method, by considering the some of the 
system situations as virtual input a recursive controller 
is designed and finally a real control input is used for 
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stabling the whole system. The block diagram of the 
drone control system has been shown in Figure 3. 

By defining state vector 𝑋𝑋𝑇𝑇 = �𝜑𝜑, �̇�𝜑,𝜃𝜃, �̇�𝜃,𝜓𝜓, �̇�𝜓,
𝑋𝑋, �̇�𝑋,𝑌𝑌, �̇�𝑌,𝑍𝑍, �̇�𝑍�

𝑇𝑇  , the obtained equations for system is 
rewritten as equation (16), by transforming equations 
(10) to (15) in state space. 

 
 
 
 
 
 
 
)16( 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�̇�𝑥1
�̇�𝑥2
�̇�𝑥3
�̇�𝑥4
�̇�𝑥5
�̇�𝑥6
�̇�𝑥7
�̇�𝑥8
�̇�𝑥9
�̇�𝑥10
�̇�𝑥11
�̇�𝑥12⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   =    

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥2
(1/𝐼𝐼𝑥𝑥)(𝐴𝐴1𝑥𝑥4𝑥𝑥6 − 𝐽𝐽𝑍𝑍𝑥𝑥4Ω + 𝑢𝑢2)

𝑥𝑥4
(1/𝐼𝐼𝑦𝑦)(𝐵𝐵1𝑥𝑥2𝑥𝑥6 + 𝐽𝐽𝑍𝑍𝑥𝑥2Ω + 𝑢𝑢3)

𝑥𝑥6
(1/𝐼𝐼𝑧𝑧)(𝐶𝐶1𝑥𝑥2𝑥𝑥4 − 𝐽𝐽𝑍𝑍Ω̇ + 𝑢𝑢4)

𝑥𝑥8
(1/𝑚𝑚)(𝑢𝑢1 sin 𝑥𝑥3)

𝑥𝑥10
(1/𝑚𝑚)(−𝑢𝑢1 sin 𝑥𝑥1 cos𝑥𝑥3)

𝑥𝑥12
(1/𝑚𝑚)(𝑢𝑢1 cos 𝑥𝑥1 cos 𝑥𝑥3 − 𝑚𝑚𝑔𝑔)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 
Figure 3. Two-stage cascade control block diagram 

Considering the dynamic underactuated of the vertical 
flying robot, in the equation (16), 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥3 and sin 𝑥𝑥1 cos𝑥𝑥3 
are defined as new input and they are illustrated by u_x 
and u_y respectively. By defining new inputs as above, 
equation (16) will be completely simulated. The 
controller is designed with this conditions. 

In the first step of designing the controller by using the 
backstepping method, the tracing error is defined as 
follows: 

)17( 𝑧𝑧1 = 𝑥𝑥1𝑑𝑑 − 𝑥𝑥1 
Using the Lyapunov theory and choosing the Lyapunov 
function and its time derivative as follows: 

)18( 𝑣𝑣(𝑧𝑧1) =  
1
2 𝑧𝑧1

2 

)19( �̇�𝑣(𝑧𝑧1) = 𝑧𝑧1(�̇�𝑥1𝑑𝑑 − 𝑥𝑥2) 

And considering the 𝑥𝑥2  state as a virtual input and 
designing it as follows: 

)20( 𝑥𝑥2 = �̇�𝑥1𝑑𝑑 + 𝛼𝛼1𝑧𝑧1 
The time derivative of the Lyapunov function is 
obtained as follows: 

)21( �̇�𝑣(𝑧𝑧1) = −𝛼𝛼1𝑧𝑧12 

The derivative of the Lyapunov function will be 
negative and 𝑧𝑧1 stabilization will be guaranteed by 
choosing positive value for 𝛼𝛼1. 

The 𝑥𝑥2 state variable in the equation (20) is actually a 
desired value (𝑥𝑥2𝑑𝑑) if 𝑥𝑥2 state of the system is equal with 
that, 𝑥𝑥1 will be converged to desired value 𝑥𝑥1𝑑𝑑. 

In the second step, new error variable is introduced as 
follows: 

)22( 𝑧𝑧2 = 𝑥𝑥2 − �̇�𝑥1𝑑𝑑 − 𝛼𝛼1𝑧𝑧1 
By considering the new Lyapunov function as follows: 

)23( 𝑣𝑣(𝑧𝑧1, 𝑧𝑧2) =  
1
2 (𝑧𝑧12 + 𝑧𝑧22) 

Its time derivative will be: 

�̇�𝑣(𝑧𝑧1) = −𝛼𝛼1𝑧𝑧12 + 𝑧𝑧2(
𝐴𝐴1
𝐼𝐼𝑥𝑥
𝑥𝑥4𝑥𝑥6 −

𝐽𝐽𝑍𝑍
𝐼𝐼𝑥𝑥
𝑥𝑥4Ω +

𝑢𝑢2
𝐼𝐼𝑥𝑥
− �̈�𝑥1𝑑𝑑

+ 𝛼𝛼1(𝑧𝑧2 + 𝛼𝛼1𝑧𝑧1) − 𝑧𝑧1) 
)24( 

By designing control input as: 

)25( 𝑢𝑢2 = 𝐼𝐼𝑥𝑥(−
𝐴𝐴1
𝐼𝐼𝑥𝑥
𝑥𝑥4𝑥𝑥6 +

𝐽𝐽𝑍𝑍
𝐼𝐼𝑥𝑥
𝑥𝑥4Ω + �̈�𝑥1𝑑𝑑 + 𝑧𝑧1

− 𝛼𝛼12𝑧𝑧1 − 𝛼𝛼2𝑧𝑧2) 
Choosing negative (𝛼𝛼2 > 𝛼𝛼1 ) the Lyapunov function 
derivative is obtained as: 

)26( �̇�𝑣(𝑧𝑧1, 𝑧𝑧2) = −𝛼𝛼1𝑧𝑧12 − (𝛼𝛼2 − 𝛼𝛼1)𝑧𝑧22 ≤ 0 
So, tending new states (𝑧𝑧1, 𝑧𝑧2) to zero and converging 
state 𝑥𝑥2  to desired value (equation 20) will be 
guaranteed. Consequently state variable 𝑥𝑥1 converges to 
𝑥𝑥1𝑑𝑑 peripherally.  

Following the same process, other control inputs are 
obtained as follows: 

 
)27( 

𝑢𝑢3 = 𝐼𝐼𝑦𝑦(−
𝐵𝐵1
𝐼𝐼𝑦𝑦
𝑥𝑥2𝑥𝑥6 −

𝐽𝐽𝑍𝑍
𝐼𝐼𝑦𝑦
𝑥𝑥2Ω + �̈�𝑥3𝑑𝑑 + 𝑧𝑧3

− 𝛼𝛼32𝑧𝑧3 − 𝛼𝛼4𝑧𝑧4) 
 
)28( 

𝑢𝑢4 = 𝐼𝐼𝑧𝑧(−
𝐶𝐶1
𝐼𝐼𝑧𝑧
𝑥𝑥2𝑥𝑥4 +

𝐽𝐽𝑍𝑍
𝐼𝐼𝑧𝑧
Ω̇ + �̈�𝑥5𝑑𝑑 + 𝑧𝑧5 − 𝛼𝛼52𝑧𝑧5

− 𝛼𝛼6𝑧𝑧6) 

 
)29( 

𝑢𝑢1 =
𝑚𝑚

cos 𝑥𝑥1 cos 𝑥𝑥3
(−𝑔𝑔 + �̈�𝑥11𝑑𝑑 + 𝑧𝑧11
− 𝛼𝛼112 𝑧𝑧11 − 𝛼𝛼12𝑧𝑧12) 

)30( 𝑢𝑢𝑥𝑥 =
𝑚𝑚
𝑢𝑢1

(�̈�𝑥7𝑑𝑑 + 𝑧𝑧7 − 𝛼𝛼72𝑧𝑧7 − 𝛼𝛼8𝑧𝑧8) 

)31( 𝑢𝑢𝑦𝑦 =
𝑚𝑚
𝑢𝑢1

(�̈�𝑥9𝑑𝑑 + 𝑧𝑧9 − 𝛼𝛼92𝑧𝑧9 − 𝛼𝛼10𝑧𝑧10) 

 

In the above equations: 
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)32( 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑧𝑧3 = 𝑥𝑥3𝑑𝑑 − 𝑥𝑥3
𝑧𝑧4 = 𝑥𝑥4 − �̇�𝑥3𝑑𝑑 − 𝛼𝛼3𝑧𝑧3

𝑧𝑧5 = 𝑥𝑥5𝑑𝑑 − 𝑥𝑥5
𝑧𝑧6 = 𝑥𝑥6 − �̇�𝑥5𝑑𝑑 − 𝛼𝛼5𝑧𝑧5

𝑧𝑧7 = 𝑥𝑥7𝑑𝑑 − 𝑥𝑥7
𝑧𝑧8 = 𝑥𝑥8 − �̇�𝑥7𝑑𝑑 − 𝛼𝛼7𝑧𝑧7

𝑧𝑧9 = 𝑥𝑥9𝑑𝑑 − 𝑥𝑥9
𝑧𝑧10 = 𝑥𝑥10 − �̇�𝑥9𝑑𝑑 − 𝛼𝛼9𝑧𝑧9

𝑧𝑧11 = 𝑥𝑥11𝑑𝑑 − 𝑥𝑥11
𝑧𝑧12 = 𝑥𝑥12 − �̇�𝑥11𝑑𝑑 − 𝛼𝛼11𝑧𝑧11

 

Two-stage control idea is used to implement the 
designed control system by backstepping method 
(Figure 3). So, in the translational control loop 𝑢𝑢1 signal 
is obtained from equation (29) and desired angels 𝑥𝑥1𝑑𝑑 
and 𝑥𝑥3𝑑𝑑 are obtained as follows: 

)33( 𝑥𝑥3𝑑𝑑 = sin−1(𝑢𝑢𝑥𝑥) = sin−1 �
𝑚𝑚
𝑢𝑢1

(�̈�𝑥7𝑑𝑑 + 𝑧𝑧7 − 𝛼𝛼72𝑧𝑧7

− 𝛼𝛼8𝑧𝑧8)� 

)34( 𝑥𝑥1𝑑𝑑 = sin−1(
𝑢𝑢𝑦𝑦

cos𝑥𝑥3𝑑𝑑
)

= sin−1(−
𝑚𝑚

𝑢𝑢1 cos𝑥𝑥3𝑑𝑑
(�̈�𝑥7𝑑𝑑

+ 𝑧𝑧7 − 𝛼𝛼72𝑧𝑧7 − 𝛼𝛼8𝑧𝑧8)) 
In the rotational controller, the control signals 𝑢𝑢2 to 𝑢𝑢4 
are calculated from equations (25, 27 and 28). 
 
4. Simulation Result 
In this part, several simulations have been run in the 
MATLAB software to evaluate the backstepping control 
system performance for the six-blade drone and the 
results are discussed and analyzed. In these analysis, in 
first, system stable capability is investigated. Then, 
capability of the desired route tracing is analyzed and 
the controller performance in the interference is 
investigated too. 
 
4.1. System stability 
In order to check the stability of the system, by 
considering the constant reference input as 𝑋𝑋𝑑𝑑 = 𝑌𝑌𝑑𝑑 =
𝑍𝑍𝑑𝑑 = 1 ; 𝜓𝜓𝑑𝑑 = π

4
; According to Figure 6 and 7, it can be 

seen that the system output tends to reference input 
without the steady-state error and overshoot. By 
considering that the system is underexcited, the system 
controller does not affect the components 𝜑𝜑  and 𝜃𝜃 
directly but because of the asymptotic stability of the 
whole system, these parameters also tend to zero 
through time. Figure 8 shows the flight route of the 
drone from the coordinate origin to the reference point. 

 
Figure 4. Closed loop system response to unit step input 

 
Figure 5. Closed loop system response to unit step input 

 
Figure 6. The robot flight path from the origin coordinate 

to the fixed point (1,1,1) 
 

4.2. Tracing the optimal route of the square route 
In this part, tracing of the drone from the desired route 
is evaluated and analyzed. In the first mission, the 
vertical flight route includes taking off from the ground, 
floating in the air, crossing four points in the square 
corners at a fixed altitude and landing on the primary 
point. To perform this mission, the drone should go from 
the origin (𝑋𝑋𝑑𝑑 = 0, 𝑌𝑌𝑑𝑑 = 0,  𝑍𝑍𝑑𝑑 = 0) to the point (0, 0, 2) 
and then go to the points (0, -2, 2), (-2, -2, 2), (-2, 0, 2) and 
(0, 0, 2) respectively and finally return to the origin (0, 0, 
0). After reaching each point, the drone remains floating 
there for a while and then flies to the next point. By 
considering that the controller has high-order 
derivation, so, a smooth reference route is created as 
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follows to go to the desired points so that the drone can 
reach the desired points by tracing these routes [17]. 

 
𝛿𝛿 < 𝛿𝛿𝜎𝜎1

𝛿𝛿𝜎𝜎1 ≤ 𝛿𝛿 ≤ 𝛿𝛿𝜎𝜎2
𝛿𝛿 > 𝛿𝛿𝜎𝜎2

 

𝜎𝜎𝑟𝑟(t)

= �

0

𝜎𝜎1 + 𝜎𝜎2(1 + 𝜎𝜎3(𝛿𝛿 − 𝛿𝛿𝜎𝜎1))𝑒𝑒−𝜎𝜎3(𝑡𝑡−𝑡𝑡𝜎𝜎1)

𝜎𝜎0 − 𝜎𝜎2(1 + 𝜎𝜎4(𝛿𝛿 − 𝛿𝛿𝜎𝜎2))𝑒𝑒−𝜎𝜎4(𝑡𝑡−𝑡𝑡𝜎𝜎2)

 

)35( 
In the above equation 𝜎𝜎𝑟𝑟 = 𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟 , 𝑧𝑧𝑟𝑟   is the reference 
route parametric equation and other coefficients of this 
route are mentioned in Table 1. 
The optimal value of the yaw angle is considered 𝜓𝜓𝑑𝑑 =
𝜋𝜋
3

 and the initial system conditions are zero. Vertical 
flight route in this situation is displayed in Figure 7. It 
should be noted that the square route is not travelled 
continuously rather drone after achieving the corner 
points, stops there for a while and then flies to the next 
point. The simulation results in Figure 8 and 9 imply that 
system output traces the reference route acceptably. 
Figure 8 shows that the drone after achieving each point. 
Rests about 10s and then flies to the next point. Y 
parameter changes in 21s and 54s only occurred because 
of angle 𝜑𝜑 change and X parameter change in 37s and 
71s occurred because of 𝜃𝜃  angle change. The desired 
route tracing error is displayed in Figure 10. 

Table 1. Reference path parameters 
parameter value parameter value parameter value 

𝒛𝒛𝟏𝟏 2 𝑦𝑦1 2- 𝑥𝑥1 2- 
𝒛𝒛𝟐𝟐 2- 𝑦𝑦2 2 𝑥𝑥2 2 
𝒛𝒛𝟑𝟑 1.5 𝑦𝑦3 1 𝑥𝑥3 0.9 
𝒛𝒛𝟒𝟒 1.5 𝑦𝑦4 1 𝑥𝑥4 1.4 
𝒕𝒕𝒛𝒛𝟏𝟏 10 𝛿𝛿𝑦𝑦1 21 𝛿𝛿𝑥𝑥1 37 
𝒕𝒕𝒛𝒛𝟐𝟐 80 𝛿𝛿𝑦𝑦2 54 𝛿𝛿𝑥𝑥2 71 

 
 

 
Figure 7. Drone path in tracing the desired path 

 
Figure 8. Drone flight route in tracing the position of the 

desired route 
 

 
Figure 9. The response of Euler angles of the robot in tracing 

the desired path 

 
Figure 10. Display of desired route tracing error 

In the second mission of the drone, it includes tracing 
continues route as follows: 

)36( 𝑥𝑥𝑑𝑑 = 2 cos �
t
2� ,𝑦𝑦𝑑𝑑 = 2 sin(t) , 𝑧𝑧𝑑𝑑 = 2,𝜓𝜓𝑑𝑑 =

π
4 

The initial conditions are considered zero. The robot 
control system simulation results in tracing the desired 
route are prepared in Figure 11. This diagram shows that 
the drone movement route matches the desired route for 
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a short time and not only the system output tends to the 
desired values, but also  
Euler angles remain low. Figure 12 and 13 show the 
system output, the drone position desired values and the 
robot rotation angles. The smallness of twist and roll 
angles in this diagram confirms the assumption of 
simplifying the motion equations and the accuracy of 
the extracted dynamic equations. The two dimensional 
view of the robot's route in tracing the reference route 
and the system tracing error diagram are presented in 
Figure 14 and 15 respectively. 

 
Figure 11. Drone flight route in tracing the position of the 

desired route 

 
Figure 12. Drone performance in tracing the position of 

the desired path 

 
Figure 13. Euler's angles response in tracing desired path 

 
Figure 14. Two-dimensional trajectory of the robot in 

tracing desired path 

 
Figure 15. Drone error in tracing desired path 

 
 
5. Conclusion 
In this research, the modeling of a six-blade vertical 
flying drone with a new structure was implemented by 
Newton-Euler method. The structure of the drone is so 
that by adding two coaxial propellers in the center of the 
drone, the cargo capacity increased and simultaneously 
its dynamic and control method maintained. So, the six-
blade vertical flying drone has a more applications than 
the normal quadrators. According to the nonlinear 
dynamics of the robot, nonlinear backstepping 
controller was designed for tracing the desired route. 
The control system stability was evaluated by obtaining 
the unit step response. Then, in order to check the 
performance of the designed controller in tracing the 
desired route, two various routes with different 
frequencies were applied to the drone control system of 
the drone and the robot behavior in tracing the applied 
routes was simulated. According to the simulation 
results, the performance of the presented controller was 
evaluated favorably.  
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