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Abstract 

The paper compares the performance of two altitude 

controllers, MPC and LQR, for aircraft in cruise flight 

conditions. The design of the controllers is based on the 

linearized state space matrix of the aircraft's 

longitudinal motion around the trim conditions. The 

controllers' ability to track the desired altitude while 

satisfying input and state constraints is evaluated, and it 

is found that both controllers are effective in 

maintaining the desired altitude. However, the MPC 

controller outperforms the LQR controller in terms of 

limited control input, achieving smoother and more 

efficient control input by predicting the future behavior 

of the system. The proposed altitude controllers provide 

a promising solution for maintaining the desired altitude 

of aircraft in cruise flight conditions, and the 

comparative analysis of the two control methods can 

assist in the selection of the appropriate control strategy 

for a given aircraft system based on the desired 

performance requirements. 
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1. Introduction  

With the development of the air transportation industry 

and the increasing use of flying devices to carry 

passengers, the use of planes with less passenger 

capacity is expanding; jet planes are also a category of 

this group that usually has more agility and 

maneuverability [1]. The design of the control system 

determines whether there is sufficient knowledge of the 

dynamics and operation of the flying device. As we 

know, in real conditions, the relationships governing the 

dynamics of a flying vehicle are non-linear and variable 

with time. On the other hand, we are faced with 

problems such as the existence of un-modelled 

dynamics, the coupling of the equations governing the 

flying vehicle, and the ambiguity of the effect of 

aerodynamic coefficients on parameters such as the 

angle of attack, the angle of side slip, etc. If there is 

sufficient knowledge of the system, despite the 

mentioned problems, it is possible to use the basics of 

linear control or to use methods that are generalizations 

of linear control methods[2],[3],[4]. Flight control 

systems for passenger aircraft are still predominantly 

designed using classical control techniques. However, 

in recent years, modern methods have found more and 

more applications[5],[6]. The current flight control 

systems provide augmented stability and control. 

However, in the case of severe or unforeseen failures or 

changes in aircraft behavior (e.g. due to icing), the 

control system reverts to reversionary modes or even 

direct control, This implies that the control law 

functionality is partly reduced or abandoned. This 

behavior is undesirable, as the pilot's workload is not 

only increased due to failure but also due to aircraft 

control. Developments subsequently focus on 

maintaining functionality, even in the case of such 

failures. Research in this field includes reliable fault 

detection and diagnosis, and control 

reconfiguration[7],[8]. One aspect is the adaptation of 

flight control laws to unforeseen circumstances and 

failures[9]. Although model predictive controllers 

provide many advantages over classical or modern 

control methods (such as PID or LQR), their practical 

applications have been limited to high-level path 

planning, guidance logic, and control of slow robots 

with less complex dynamics[10]. In the paper [11], a 

robust MPC-based autopilot was designed for a mini 

UAV and key features of the proposed technique were: 

(i) the control gain matrix is evaluated offline to 

guarantee the real-time feasibility of the MPC; (ii) the 

controller is robust to parametric model uncertainties 

(i.e. mass and inertia variations) and to random bounded 

noise (i.e. gust). Lateral control during aircraft-on-

ground deceleration is discussed in [12] based on linear, 

quadratic, and predictive control theories. One of the 

problems in passenger planes is the control of the plane 

in flight maneuvers. 

In this paper, the dynamic model of a passenger plane 

was derived using Euler's equations. The nonlinear 

model was subsequently linearized around the cruise 

flight, and two controllers, namely Model Predictive 

Control (MPC) and Linear Quadratic Regulator (LQR), 

were compared for executing the desired maneuver. The 

selection of these controllers was based on the use of 

quadratic optimization in their control laws, with the 

primary difference lying in the application of online 

constraints and model prediction in MPC. 

The outline for this paper is as follows: In Section II, we 

will deal with the mathematical modelling of the Cessna 

Citation II (550) aircraft, in Section III, the controllers 

are described, and in the last section, the results will be 

investigated and compared. 
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2. Mathematical modelling 

The control laws developed in this research are 

evaluated in the Cessna Citation II PH-LAB laboratory 

aircraft Fig[1] and a corresponding aerodynamic aircraft 

model coefficient which is derived from flight test 

data[13]. An aerodynamic derivative derived from [14] 

flight test vehicle dimension and mass properties can be 

found in Table 1. 

 

Fig. 1:Cessna citation II.[9] 

 

Table 1: PH_LAB dimension and mass properties.[13] 

dimension 

b 15.9m 

𝑐 2.09m 

S 30𝑚2 

Mass and inertia 

m 4,157kg 

𝑈0 225
𝑚

𝑠
 

𝐼𝑥𝑥 12392𝑘𝑔.𝑚2 

𝐼𝑦𝑦 31501𝑘𝑔.𝑚2 

𝐼𝑍𝑍 41908𝑘𝑔.𝑚2 

𝐼𝑥𝑧  2252.2𝑘𝑔.𝑚2 

 

The dynamic equations of the aircraft are sub-extracted: 

 

�̇� = 𝑋𝑢𝑢 + 𝑋𝑤𝑤 − 𝑔𝑐𝑜𝑠𝜃0𝜃 + 𝑋𝛿𝑒𝛿𝑒                      [1]                      

�̇� = 𝑍𝑢𝑢 + 𝑍𝑤𝑤 + 𝑈0𝑞 −  𝑔𝑠𝑖𝑛𝜃0𝜃 + 𝑍𝛿𝑒𝛿𝑒         [2] 

�̇� = 𝑀𝑢𝑢 + 𝑀𝑤𝑤 + 𝑀𝑞𝑞 + 𝑀𝛿𝑒𝛿𝑒                              [3] 

�̇� = 𝑞                                                                                   [4] 

ℎ̇ = −𝑤 + 𝑈0𝜃                                                                  [5] 

 

which is the relationship above g is the earth's 

gravity, 𝑈0 is the initial speed of the plane, u is the 

horizontal speed, w is the vertical speed, the angular 

speed around the longitudinal axis is q, the pitch angle 

𝜃, 𝑋𝑢stability derivatives in the direction of horizontal 

body axis relative to horizontal speed, 𝑋𝑤stability 

derivatives in the direction of horizontal body axis 

relative to vertical speed, 𝑋𝛿𝑒
control derivatives in the 

direction of horizontal body axis relative to elevator 

deflection, 𝑍𝑢stability derivatives in the direction of 

vertical body axis relative to horizontal speed, 

𝑍𝑤stability derivatives in the direction of vertical body 

axis relative to vertical speed, 𝑍𝛿𝑒
control derivatives in 

the direction of vertical body axis relative to elevator 

deflection, 𝑀𝑢represents the change in pitching moment 

caused by a change in forward speed, 𝑀𝑤is the change 

in pitching moment caused by a change in vertical 

speed, 𝑀𝑞is the change in pitching moment caused by a 

change in the rate of pitch angle, 𝑀𝛿𝑒
 is the change in 

pitching moment caused by a change in elevator 

deflection. Table 2. 

 

𝐴 =

[
 
 
 
 
𝑋𝑢 𝑋𝜔 0 −𝑔𝑐𝑜𝑠𝜃0 0
𝑍𝑢 𝑍𝜔 𝑈0 −𝑔𝑠𝑖𝑛𝜃0 0
𝑀𝑢 𝑀𝜔 𝑀𝑞 0 0

0 0 1 0 1
0 −1 0 𝑈0 0]

 
 
 
 

 , 𝐵 =

[
 
 
 
 
𝑋𝛿𝑒

𝑍𝛿𝑒

𝑀𝛿𝑒

0
0 ]

 
 
 
 

   [6] 

 

 

 

Table 2: stability and control coefficient.[13] 

Stability & control coefficient 

𝑋𝑢 -0.0072 𝑍𝛿𝑒
 0 

𝑋𝑤 0.1532 𝑀𝑢 0 

𝑋𝛿𝑒
 15.8181 𝑀𝑤 -0.0593 

𝑍𝑢 -0.6753 𝑀𝑞 -1.3017 

𝑍𝑤 -1.7716 𝑀𝛿𝑒
 -24.0336 

 

3. Flight control design 

 
3.1 LQR Controller 

The goal of this controller is to find a control input that 

minimizes a cost function in the following form  

𝐽 =
1

2
∫ [(𝑥(𝑡) − 𝑥𝑑(𝑡))𝑇

𝑡𝑓

𝑡0

(𝑡)𝑄(𝑥(𝑡) − 𝑥𝑑(𝑡))

+ 𝑢𝑐
𝑇(𝑡)𝑅𝑢𝑐(𝑡)]𝑑𝑡                          [7]  

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢𝑐(𝑡)                                                 [8] 

Above, x(t) is the state vector and equal to 
[𝑢 𝑤 𝑞 𝜃 ℎ], 𝑢𝑐(𝑡) is the input control matrix 

and equal to 𝛿𝑒 , A is the system state matrix, B is the 

control matrix, and R and Q are positive definite weight 

matrices.  

As a result, the control law will be written as follows. 

𝑢𝑐(𝑡) = −𝐾[(𝑥(𝑡) − 𝑥𝑑(𝑡))]
𝑇
                                  [9] 
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3.2 Model Predictive Control 

The utilization of Model Predictive Control (MPC) 

necessitates the use of a model to anticipate the 

behavior of the system in the future. The 

aforementioned model enables the system to 

estimate the forthcoming actions of the process. Fig 

2 illustrates the block diagram of the control 

system, which is predicated on model-based 

prediction. 

 
Fig. 2: General MPC block diagram 

 

Control oriented model is a time-invariant linear system 

therefore discrete time system equation will be as 

follows:  

 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢𝑐(𝑘)           

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢𝑐(𝑘)
                           [10]                        

 

According to equation (10), as well as the relationship 

between the state and control variables 𝑥(𝑘), 𝑢𝑐(𝑘), the 

prediction of the state 𝑥(𝑘 + 1) can be obtained as 

equation (11). 

 

𝑥𝑛×1(𝑘 + 1|𝑘) = 𝐴𝑛×𝑛𝑥𝑛×1(𝑘|𝑘) + 𝐵𝑛×𝑚𝑢𝑐𝑚×1
(𝑘|𝑘) 

𝑥(𝑘 + 2|𝑘) = 𝐴2𝑥(𝑘|𝑘) + 𝐴𝐵𝑢𝑐(𝑘|𝑘) +
𝐵𝑢𝑐(𝑘 + 1|𝑘)                                                      [11]                          

⋮ 

𝑥(𝑘 + 𝑁𝑝|𝑘) = 𝐴𝑁𝑝𝑥(𝑘|𝑘) + 𝐴𝑁𝑝−1. 𝐵. 𝑢𝑐(𝑘|𝑘) + ⋯

+ 𝐴𝑁𝑝−𝑁𝑐 . 𝐵. 𝑢𝑐(𝑘 + 𝑁𝑐 − 1|𝑘) 

 

In the above relationship 𝑁𝑝 is the horizon of prediction 

and 𝑁𝑐 is the horizon of control. The prediction equation 

for a system model can be written as equation (12) 

 

𝑋𝑛𝑁𝑝×1 = 𝐹𝑛𝑁𝑝×𝑛𝑥𝑛×1(𝑘|𝑘) + Φ𝑛𝑁𝑝×𝑚𝑁𝑐
𝑈𝑚𝑁𝑐×1  [12] 

           

Where 𝑋 ∈ 𝑅𝑛𝑁𝑝, 𝐹 ∈ 𝑅𝑛𝑁𝑝×𝑛, Φ ∈ 𝑅𝑛𝑁𝑝×𝑚𝑁𝑐 and 

𝑈 ∈ 𝑅𝑚𝑁𝑐  and 𝐹 and Φ are shown in equations 

(13),(14) 

 

𝐹 ≜

[
 
 
 
 

𝐴
𝐴2

⋮
𝐴𝑁𝑝−1

𝐴𝑁𝑝 ]
 
 
 
 

𝑛𝑁𝑝×𝑛

                                  [13] 

Φ ≜ [

𝐵 0̅ … 0̅
𝐴𝐵 𝐵 … ⋮
⋮

𝐴𝑁𝑝−1. 𝐵
⋮

𝐴𝑁𝑝−2. 𝐵
⋱
…

0̅
𝐴𝑁𝑝−𝑁𝑐 . 𝐵

]

𝑛𝑁𝑝×𝑚𝑁𝑐

[14] 

 

4. Implementation and Results 

In order to compare the efficacy of the designed 

controllers, we employed identical optimization 

conditions and conducted a comparative analysis of the 

results. Specifically, we designed the controller by 

considering the weight matrices Q and R under similar 

conditions, and defined them as follows: 

𝑄 = 𝑑𝑖𝑎𝑔([10,10,10,10,10])                                 

𝑅 = 0.1     

The Model Predictive Control (MPC) was designed 

with a sampling time of one second, a prediction horizon 

of 30, and a control horizon of 8. However, due to 

constraints inherent in the aircraft and actuator during 

cruise flight, we defined the control constraint for the 

elevator angle as follows: 

 

 −0.5 𝑟𝑎𝑑 ≤ 𝛿𝑒 ≤ 0.5 𝑟𝑎𝑑      

 

To compare the performance of two controllers in a 

specific flight maneuver, Fig. 3 illustrates that both 

controllers exhibited similar path-following 

characteristics. 

Moreover, Fig. 4 and Fig. 5 depict the angle of attack 

of the aircraft under LQR and MPC controllers, 

respectively, when the aircraft seeks to adjust its height 

by 200 meters. Notably, the LQR control's angle of 

attack reaches the stall angle, causing the aircraft to 

stall. Conversely, the maximum angle of attack 

observed under MPC control is lower than the stall 

angle. 

Finally, Fig. 6 and Fig. 7 display the perturbed velocity 

of the aircraft, which indicate that both controllers 

exhibit almost identical behavior. 
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Fig. 3: Aircraft altitude response to the given scenario using the LQR controller and MPC 

 
Fig. 4: Aircraft angle of attack in LQR control  

Fig. 5: Aircraft angle of attack in MPC control 
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Fig. 6: Perturbed longitudinal speed in LQR control 

 
Fig. 7: Perturbed longitudinal speed in MPC control 

 
Fig. 8: LQR control signal input (Elevator) 

 
Fig. 9: MPC control signal input (Elevator) 

 Based on the results depicted in Fig. 8, the Linear 

Quadratic Regulator (LQR) controller applies the 

control input (i.e., elevator) over its maximum range. 

Conversely, the control signal in the Model Predictive 

Control (MPC), as illustrated in Fig. 9, employs a 

reduced range to monitor the path. Notably, the control 

signal in the LQR approach exhibits a noise range of 

0.02. This noise could be attributed to operator fatigue 

or the potential for the operator to disobey the control 

signal due to the operator's dynamics. However, in an 

ideal setting, this noise does not exist in the MPC 

technique. 
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5. Conclusion 

This paper investigates the altitude adjustment of a 

passenger aircraft using two controllers: Model 

Predictive Control (MPC) and Linear Quadratic 

Regulator (LQR), accounting for actuator limitations. 

After designing the controller for the aircraft's linear 

dynamics, both controllers exhibit similar altitude 

adjustment behavior, with a key distinction observed in 

the angle of attack output. Specifically, the maximum 

angle of attack under MPC control is 0.27 radians (15°), 

while under LQR control, it is 0.36 radians (20°). 

Moreover, MPC control does not result in actuator 

saturation, whereas LQR control experiences saturation 

multiple times. 
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