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Abstract 

Artificial intelligence, including Machine learning, 

Deep learning, and Reinforcement learning, has shown 

successful results in various applications in the fields of 

science and engineering, such as electrical engineering, 

computer engineering, bioengineering, financial 

engineering, medicine, aerospace engineering, and 

more. From this point of view, researchers have turned 

to AI techniques to solve various challenges in their 

respective fields and have designed successful 

applications to overcome various challenges in the 

aerospace industry. The main concern of any space 

mission operation is to ensure the health and safety of 

the spacecraft. The worst case in this circumstance is 

probably the loss of a mission but the more common 

interruption of spacecraft functionality can result in 

compromised mission objectives. As spacecraft 

complexity rises, many present methods of system 

health monitoring are challenging to employ. Also, the 

possibilities to observe and interact with any given 

spacecraft are naturally limited compared to ground-

based systems due to several factors. These include but 

are not limited to the availability and bandwidth of their 

connection to ground, the availability of staff, 

communication latencies, and power budgets. That’s 

the reason why every space-crafts need a minimum 

level of autonomy during their missions. The goal of 

this survey is to provide an overview of the world of 

artificial intelligence and its different methods, then talk 

about anomaly detection, Fault Detection Isolation and 

Recovery (FDIR), and a verity of methods of health 

monitoring systems and explain why it’s essential for 

every space missions. 

 

Keywords: Health monitoring system - Artificial 

Intelligence - Anomaly detection – Autonomy - fault 
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1. Introduction  

The possibility of observing and interacting with 

satellites in space is usually limited due to several 

factors compared to terrestrial systems. Past 

experiments and missions have shown that the use of 
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more complex mechanisms with autonomous capability 

can greatly increase the efficiency of many missions in 

terms of reliability, output, and the number of attempts 

to make the desired mission operational. Also, this 

independence or autonomy can lead to a significant 

reduction in mission costs, otherwise, a large number of 

human resources are needed to carry out such activities. 

Artificial intelligence is a popular and widely used 

method for implementing autonomous capability space-

crafts.[1] 

This paper gives a general introduction to Artificial 

intelligence and its methods, and spacecraft autonomy 

provides an extensive survey of existing techniques and 

algorithms for anomaly detection and Fault Detection 

Isolation and Recovery (FDIR) and then brings some 

more detail about a useful application like health 

monitoring system using AI techniques.[2] 

The paper is organized as: Section 2 gives a general 

introduction to the terminology of artificial intelligence 

and spacecraft autonomy, Anomaly Detection and Fault 

Detection, Isolation and Recovery. In section 3, the 

purpose of anomaly detection as a foundation for the 

self-awareness of systems as well as corresponding 

algorithms are described, and then describes FDIR 

concepts for spacecraft with an example and finally 

bring a survey of health monitoring system and different 

techniques. Subsequently, section 4 gives an overview 

of related work in the field of a health monitoring 

system based on AI techniques, and section 5 wraps up 

the paper. 

 

2. Terminology 

The following sections give an introduction to the 

terminology used in this paper. These are autonomy, 

artificial intelligence, anomaly detection, and Fault 

Detection Isolation and Recovery (FDIR). 

 

2.1. Autonomy 

Autonomy is the capability to make rational, informed, 

self-determined, and self-reliant decisions. For a system 

to be called autonomous, it needs to be able to sense, 

think and act in the world around it. It requires the 

capability to sense its surroundings and some 
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consciousness about its capabilities and their effects on 

its environment and internal state. From this knowledge 

about the world and about itself, an autonomous system 

can draw conclusions and make decisions concerning its 

own goals and carry out actions to reach these goals.[2] 

Furthermore, an autonomous system has to be able 

to respond to off-nominal situations by adjusting its 

sequence of actions to continue achieving its goal as 

well as maintain safety. Commanding of an autonomous 

system is done via sets of goals it shall achieve. 

Autonomy describes a set of system functions and 

capabilities instead of techniques by which they are 

implemented. Artificial intelligence is, thus, one of 

many possible approaches to reaching autonomy. A 

brief introduction to artificial intelligence (AI) is given 

in the following section.[2] 

 
2.2. Artificial intelligence 

Artificial intelligence (AI) is the study of intelligence as 

it exists in computer systems, as opposed to natural 

intelligence as it is seen in people and other living 

things. More generally, for a computer system to be 

called intelligent, it needs to be able to make rational 

decisions based on its observations of the world and a 

set of goals it shall achieve. Despite sounding like a 

cutting-edge strategy, artificial intelligence (AI) has 

roots in the 1950s and spans a number of paradigms and 

techniques. As shown in Figure 1, Machine learning, 

Deep learning, Reinforcement learning, and their 

intersections are all components of AI. Thus, a major 

part of AI follows the learning approach, although 

approaches without any learning aspects are also 

included. The overall goal of AI research is to enable 

directed learning or to make the machine smarter by 

following specific rules. Here, the term "smarter" refers 

to the capacity to carry out difficult cognitive activities 

that would typically need a person, such as 

classification, regression, clustering, detection, 

recognition, segmentation, planning, scheduling, or 

decision-making. Many people thought that these jobs 

could be accomplished in the early days of AI by 

teaching computers a vast array of rules that incorporate 

human knowledge. The implementation of sophisticated 

customized commands that computers might directly 

employ was thus given a lot of attention. Even though 

this symbolic AI has a wide range of applications, it has 

exhibited a number of limitations in terms of precision 

and accuracy for more difficult issues that have less 

structure, more complexity, and hidden features, such 

language processing and computer vision tasks. 

Researchers used a learning strategy called ML to 

overcome these constraints.[3] 

 
Figure 1 Artificial Intelligence, Machine Learning, Deep 

Learning and Reinforcement[4] 

2.3. Machine Learning (ML) 

A portion of AI is known as ML, which includes DL and 

RL. ML necessitates a learning strategy in contrast to 

symbolic AI, where the computer is given all the rules 

to tackle a specific problem. As demonstrated in Figure 

2 and best explained by the father of AI, Alan Turing: 

“An important feature of a learning machine is that its 

teacher will often be very largely ignorant of quite what 

is going on inside, although he may still be able to some 

extent to predict his pupil’s behavior,” An ML system is 

trained rather than programmed with explicit rules. The 

learning process requires data to extract patterns and 

hidden structures; the focus is on finding optimal 

representations of the data to get closer to the expected 

result by searching within a predefined space of 

possibilities using guidance from a feedback signal, 

where representations of the data refer to different ways 

to look at or encode the data. Three things are need to 

accomplish that: input data, examples of the anticipated 

output, and a way to assess the algorithm's 

performance.[5]  

 
Figure 2 Machine Learning Approach[4] 

Deep learning and non-deep learning are two 

prominent categories for machine learning algorithms. 

Although deep learning (DL) has received greater 

attention and popularity, some traditional non-deep ML 

techniques are more beneficial in some applications, 

particularly when data is scarce. As illustrated in Figure 

3, ML algorithms can also be divided into supervised, 

semi-supervised, unsupervised, and RL 

classifications.[4] 
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Figure 3 Machine Learning Sub-fields[4] 

ML techniques such as supervised, unsupervised, 

and semi-supervised learning can all be used to address 

a wide range of issues. During supervised learning, all 

of training data is labeled with the correct answer. The 

algorithm is thus fully supervised, as it can check 

whether its predictions are right or wrong at any point in 

the training process. A supervised model may predict 

labels for unlabeled data during inference by learning 

patterns from training data. Supervised learning has 

been applied for classification and regression tasks. As 

labeling can be impossible due to a lack of information 

or infeasible due to high costs, unsupervised learning 

employs an unlabeled data set during training. The 

model can employ unlabeled data to uncover hidden 

patterns or structures that may help to explain a 

particular phenomenon or whose output may be used as 

an input for other models.[5] 

Auto-encoders, association, grouping, and anomaly 

detection have all frequently used unsupervised learning 

(AEs).[5] 

Semi-supervised learning enables a mix of unlabeled 

and labeled training data as a middle ground between 

supervised and unsupervised learning. Thus, when only 

a small portion of the data is labeled and/or the labeling 

process is either time-consuming or expensive, semi-

supervised learning is a fantastic alternative. Pseudo-

labeling is an illustration of this method that has been 

applied to enhance supervised models.[5] 
 

2.4. Deep Learning (DL) 

This area of machine learning needs a lot of 

computational resources, as opposed to shallow models. 

Recent developments in computing power and the 

automation of feature engineering have paved the way 

for deep learning (DL) algorithms to outperform 

traditional machine learning (ML) algorithms for 

handling challenging problems, especially perceptual 

ones like computer vision and natural language 

processing. Since shallow ML algorithms are relatively 

simple, they need human interaction and skill to extract 

useful features or to modify the data so that the model 

can learn more easily. Since these changes are carried 

out implicitly by deep networks, DL models minimize 

or eliminate these processes.[6] 

 

2.5. Reinforcement Learning (RL) 

Learning which actions to execute in order to maximize 

a reward signal is the focus of RL. As seen in Figure 4, 

the agent must try each action to determine which 

produces the greatest reward. Both current and future 

rewards may be impacted by these behaviors. Some RL 

methods call for the addition of DL; these methods are 

a subset of deep RL (DRL). An RL system has four sub-

elements in addition to the agent and the environment: a 

policy, a reward signal, a value function, and 

occasionally an environment model. In this case, 

learning entails the agent figuring out the optimal way 

to link environmental states to the actions that should be 

conducted in those states the objective of the RL 

problem is to have the environment send the RL agent a 

reward signal after each action. A value function, as 

opposed to a reward, predicts the total amount of 

compensation that agent might hope to get over the 

course of time. Rewards result in an immediate appraisal 

of the action. Last but not least, an environment model 

imitates the behavior of the environment. These models 

can be useful for planning since they let the agent think 

about potential future events before they happen. 

Model-free approaches are those without models, 

whereas model-based methods are those for addressing 

RL issues that make use of models.[4] 

 
Figure 4 Reinforcement Learning[4] 

2.6. Anomaly Detection 

Finding patterns in some underlying group of data 

points and identifying deviations from those patterns are 

the goals of anomaly detection. This is crucial for 

spacecraft to detect off-nominal situations and react 

appropriately. Anomaly detection is done on multi-

dimensional data, such as pictures, as well as time-series 

data, such as temperature readings over time, primarily 

to identify scientific opportunities or reduce the amount 

of data chosen for downlink.[2] 

 

2.7. Fault Detection, Isolation and Recovery (FDIR) 

A fault is when one or more system parameters deviate 

from the desired value. In addition to a flipped bit in the 

computer's memory brought on by a Single Event 

Effect, this could be a temperature value that is outside 

of acceptable limits. Failures are the outward signs of a 

functional flaw in a system. Correct fault handling that 

prevents failure is crucial for ensuring system 

availability, reliability, and performance. This is 

referred to as FDIR in spacecraft design. The ability of 
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a system to recognize when a defect has occurred is 

known as fault detection. It is typically followed by fault 

isolation to pinpoint the exact site of the fault 

(subsystem, memory region, etc.). Ultimately, in the 

fault recovery step, the system tries to transfer to a safe 

state of execution in which the fault has been 

mitigated.[2] 

 

3. Health Monitoring System 

A cognitive system that can assess its environment and 

internal condition, form inferences based on its goals, 

and act accordingly without ground assistance is one of 

the goals of bringing autonomy to spacecraft. In this 

regard, it's critical to be able to detect patterns and 

anomalies in order to spot off-nominal circumstances 

when a mission is in operation. Point anomalies, 

contextual anomalies, and collective anomalies are all 

distinguished. A data point is an anomaly for point 

anomalies if it differs from all the other normal data 

points. A data point's surrounding data points must be 

analyzed in order to classify it as a contextual anomaly. 

For example, a high temperature that is nominal during 

daytime would be considered an anomaly when 

observed during nighttime Even though a single data 

point may occur nominally when viewed in isolation, an 

entire sequence of data points is considered anomalous 

for collective anomalies. It goes without saying that the 

detection of contextual anomalies, and particularly 

collective anomalies, is much more difficult than the 

detection of point anomalies.[2] 

Anomaly detection can be divided into three basic 

categories: supervised, unsupervised, and semi-

supervised. Both anomalous and nominal data 

sequences are accessible for training in the supervised 

instance, and each sequence is tagged as either one or 

the other. The disadvantage of this is that the system 

may miss first-time abnormalities during operations 

since it has never seen them before and categorizes them 

as normal behavior. The algorithm assumes that in the 

unsupervised scenario, anomalies occur far less 

frequently than expected behavior. As a result, it makes 

an effort to understand the overall structure of the 

training data and labels any deviations as anomalies. But 

if the same abnormalities are regularly seen, the system 

can mistakenly identify them as normal behavior. The 

training data in the semi-supervised instance only 

includes nominal data. Engineers may now be confident 

that they are not feeding anomalies to the system during 

training. The system learns to detect patterns in the 

underlying data once more.[2] 

Calculating a set of statistical measures (minimum, 

maximum, average, and standard deviation) for a 

sequence in time of a given parameter and then 

computing the Euclidean distance to other time-

sequences that have already been observed are two 

straightforward mathematical and computational 

approaches. Then, using local outlier probabilities, the 

probability of having detected an outlier or abnormality 

is calculated. The technique has successfully been used 

to perform ground-based analysis of the telemetry of the 

ESA X-ray space observatory XMM-Newton.[7] 

Another effective method for anomaly detection is 

supported vector machines (SVMs). SVMs are a 

mathematical technique for classification and regression 

that raises the dimensions of the input data in the hopes 

that the data would eventually become linearly 

separable by a hyper-plane. Kernels are used as 

similarity functions for this. Linear, polynomial, or 

radial basis function (RBF) kernels are examples of 

typical kernels. Based on the few training instances that 

have been discovered to be necessary, this hyper-plane 

may turn into a non-linear separator during the 

backward transformation. In SVMs as opposed to other 

classifiers, the hyper-plane that minimizes the L2 norm 

and maximizes the lowest margin from any data point to 

the hyper-plane is chosen because there may be an 

endless number of hyper-plane. This produces a simple 

and robust hyper-plane. SVMs present a supervised 

mean of machine learning. For anomaly detection, this 

implies that labeled training data for both nominal and 

off-nominal situations has to be available. The problem 

of having only a limited number of anomalies, that are 

by definition rare compared to nominal behavior, by 

training an SVM in multiple steps with an increasing 

number of samples. Weighting input features according 

to their kernel-based distance before training speeds up 

training even more. The results have been verified using 

data from the Interferometry Program Flight 

Experiment II (IPEX II).[8] 

Figure 5 depicts the schematic of a fault detection 

system that makes use of multiclass SVMs, binary PCA, 

and PCA.[2] 

 
Figure 5 PCA- and SVM-based Fault Detection and 

Isolation[2] 

In a first step, the telemetry data is mapped to a lower 

dimensional space by PCA. In the next step, the data 

point is classified by a binary SVM as representing a 

nominal or fault state. In case a fault is detected, the data 

point is passed to the fault classification performed by a 

multi-class SVM in a One-Against-All (OAA) fashion. 

Both SVMs are trained using telemetry data that has 

been manually labeled with its respective fault state.[2] 

Let's talk more about the health monitoring system 

right now. A large group of people, including mission 

controllers and system engineers, monitor the health of 
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a spacecraft to look for any irregularities in the down-

linked data. Parameter limit checking, which creates a 

reference table of nominal sensor values for each sensor 

on a system, is one of the traditional methods of health 

monitoring. To determine whether the values fall within 

the ranges, this table is then contrasted against real-time 

telemetry. If not, there might be a problem with that 

sensor. This approach of health monitoring is 

particularly ineffective and time-consuming because it 

becomes increasingly difficult to generate this reference 

table as the number of components rises. It is 

challenging to accurately define what would be a 

healthy sensor value. Additionally, due to various 

component interactions, numerous reference tables 

would need to be created for each of the satellites' 

various operational modes. Such an approach also lacks 

the ability to describe complicated interactions that may 

involve multiple concurrent parameters in the 

operational context because it only takes individual 

parameter ranges into account when making its 

choice.[9] 

To address the difficulties of tracking the 

increasingly complex component interactions of 

spacecraft, data-driven systems like the Inductive 

Monitoring System (IMS) were developed. IMS offers 

a more autonomous way of spotting anomalies inside a 

system. The amount of archival system telemetry that is 

available for numerous different spacecraft and 

applications has made these strategies possible. In order 

to provide system health monitoring, IMS leverages this 

archived data to construct nominal system behavior 

models that may be evaluated against real-time 

telemetry. The telemetry will fit one of the models if the 

system is operating normally. If not, then this can be a 

sign of a system fault or anomaly.[10] 

IMS is a technique for detecting anomalies based on 

distance that clusters the relationships between a 

number of sensors in time-series data. It makes use of 

vectors as a data structure to store values for a set period 

of time for a number of connected system parameters. 

During the learning phase, it searches through the 

archived data, creates these vectors, and clusters vectors 

with comparable or consistent values. As a result, each 

cluster specifies a separate sensor range that represents 

a different characterization or notional state that the 

system may be in. The cluster defines a nominal 

operating region that is represented as an N-dimensional 

hyper-cube in the vector space where N is the number 

of parameters chosen. Each dimension of this hyper-

cube specifies a minimum and maximum value for that 

parameter in the given cluster. This is beneficial because 

it allows us to model interactions between related 

parameters instead of looking at each one individually. 

The end result of the learning phase is a knowledge base 

of many clusters that define a model of the nominal 

states of the system. This knowledge base can then be 

queried with new input to see if it falls within a nominal 

operating region. It is important that the training data is 

free of any anomalies to ensure bad behavior isn’t 

incorporated into the system .[1 ,10]  

Once a knowledge base has been created from the 

learning phase, it can be used for real time monitoring 

or the analysis of archived events. This monitoring 

produces a deviation value that signifies how well the 

system is conforming to the model. Large deviation 

values may highlight a precursor to a malfunction or a 

malfunction itself. This monitoring phase does not 

explicitly pinpoint the exact problem with the system, 

rather it gives details as to which features are causing 

the issue and where it is occurring so that a mission 

controller can later do a closer inspection .[1 ,10]  

In order to begin IMS monitoring, real-time data 

from the system under observation is first formatted into 

the predetermined data vectors from the learning phase. 

This data vector has been standardized to ensure that the 

parameters are scaled similarly, and it can be further 

scaled by assigning weights to each parameter to give 

more important features a higher sensitivity. The 

knowledge base's clusters are then compared with the 

data vector to determine which cluster it belongs to or 

has the shortest distance to. This distance can be viewed 

as a deviation score, indicating how far the input vector 

deviates from a nominal cluster, if the vector does not 

lie within a cluster. The significance of the anomaly 

increases with the deviation value. Deviation scores that 

are small may indicate nominal behavior that was not 

captured in the training data. A threshold value is 

usually given as a parameter to the monitoring algorithm 

that accepts input vectors that have deviation scores that 

fall under the threshold. Along with the deviation score, 

the individual parameter contributions to the score can 

be saved to give the operator more details as to which 

sensors are causing the issues. An overview of the two 

phases can be seen in Figure 6.[1, 10] 

 
Figure 6 Overview of IMS[1] 

Overall, IMS has strong and effective monitoring 

capabilities. It provides the capacity to quickly model 

the behavior of complicated systems using only 

nominally archived data. It is also particularly flexible 

for applications involving system monitoring. As more 

nominal telemetry is obtained, the knowledge base can 

be updated whenever necessary to create a more precise 

model of the system. It is also possible to alter the 

monitored features to remove or add new features that 

might produce better outcomes. IMS has achieved great 

success in a variety of system applications thanks to its 

strengths.[1] 

 

4. Related Work 

Over decades researchers have devoted considerable 

effort to develop various heath monitoring systems 
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(HMSs) for space operations. The methods used include 

machine learning/data mining techniques and 

multivariate statistical approaches. These methods can 

provide important tools for the field of intelligent 

monitoring which can learn, adapt, and support decision 

making concerning the system that flight experts are in 

charge of. Much of the previous work in fault detection 

for space operations has used unsupervised anomaly 

detection algorithms because they relied on historical 

data, and the historical data generally doesn't contain 

enough examples of faults to adequately train a 

supervised learning algorithm. One of the advantages of 

our design work described in this article is the database. 

It has training data with faulty cases that facilitate us to 

adequately train a supervised learning algorithm.[11] 

A comparison of six unsupervised anomaly 

detection systems was published by Martin et al. Data 

from four space shuttle flights and two test stand firings 

were utilized for training the algorithms, and data from 

eight shuttle flights and four test stand firings were used 

for validation. They come to the conclusion that the 

algorithm with the best accuracy appeared to be either 

Orca or one-class support vector machines (OCSVM), 

but some reclassification is necessary in order to best 

represent the new anomalies discovered during analysis, 

even though they acknowledge that they don't have 

enough data to make statistically significant 

comparisons of the relative performance of the 

algorithms.[12] 

Iverson used IMS to analyze data from four 

temperature sensors located inside the shuttle's wings 

following the STS-107 space shuttle Columbia incident. 

He tested it using data from STS-107 after training it 

with information from five earlier space shuttle flights. 

It indicated in hindsight that with the aid of IMS, flight 

controllers may have been able to identify the damage 

to the wing far sooner than they did by detecting an 

anomaly in data from the temperature sensors on the 

shuttle's left wing shortly after the foam impact. More 

recently, IMS has been deployed to the mission control 

center at NASA Johnson Space Center, where it is being 

used to monitor live data from the international space 

station (ISS).[13, 14] 

One system failure and four additional anomalies of 

data from the SSME were provided by Schwabacher et 

al. They say that four unsupervised anomaly detection 

algorithms—Orca, GritBot, IMS, and OCSVMs—were 

used to identify anomalies. This allows SVMs to 

maintain the advantage of finding the globally optimal 

solution given the training data while still being 

"strongly effective using non-linear supervised models." 

The authors made it clear that some abnormalities were 

picked up by some algorithms while others weren't 

because different algorithms utilize varied definitions of 

what constitutes an anomaly. Orca, IMS, and GritBot 

are relatively straightforward algorithms that are simple 

to comprehend and offer some form of explanation for 

each anomaly in terms of the variables; as a result, they 

are more likely to be accepted by professionals than the 

more complex and challenging OCSVM method.[15] 

Without utilizing cross-validation, Yairi et al. 

analyzed and compared a number of unsupervised and 

supervised dimensionality reduction techniques. 

According to the authors' perspective, using cross-

validation may take too much time if there are a lot of 

classes or training sets.[16] 

Verzola et al. made it clear that a reactive model is 

frequently the foundation for space operations. The 

complexity of this model is its biggest disadvantage. It 

is challenging to carry out preventive measures to avoid 

the anticipated faulty condition and to avert failures. 

Additionally, their paper discusses a study on a potential 

proactive failure model based on statistics, machine 

learning, and data mining approaches to determine 

future patterns of the object to predict the behavior of 

the system. However, the research work was not helpful 

for making real-time forecasts that could be compared 

to a set of predetermined thresholds for failure 

probabilities.[17] 

MacGregor et al. established the potential of 

applying multivariate latent space methods in 

monitoring and fault diagnosis by comparing it with 

many other data-driven techniques. The authors stated 

that the class of regression methods/classifiers that does 

not allow for modeling the X-space includes black-box 

models like artificial neural networks (ANNs), hidden 

Markov models (HMMs), and SVMs. The capacity of 

these strategies to evaluate full rank data, handle 

missing data, and screen for outliers in fresh data is also 

limited, despite the fact that they acknowledge their 

potential utility in specific circumstances. [18] 

A failure detection method for crucial satellite 

components dubbed the anomaly monitoring method 

(AMM) was presented by Peng et al. It consists of state 

estimate based on multivariate state estimation 

techniques (MSETs). The technique was used on 

satellite power supply subsystems, and lithium-ion 

battery failure analysis was done (LIBs). The authors 

did not conduct an in-depth analysis of LIBs failure or 

take into account more affecting aspects because they 

chose only two parameters as the essential parameters 

of AMM.[19] 

An organized and thorough overview of the research 

on classification-based outlier detection was provided 

by Upadhyaya et al. The authors provided a list of 

numerous methods that can be used in this field of study, 

concentrating on the general strategy used by each 

method. Additionally, they have outlined the 

fundamental presumptions that the strategies rely on to 

distinguish between typical and exceptional behavior. 

Without relying on a common understanding of outliers, 

the study was done in an unstructured manner. 

Therefore, it is challenging to understand the outlier 

detection problem theoretically.[20] 

Data-driven techniques were used by Schwabacher 

et al. to automatically identify and pinpoint flaws in the 

J-2X rocket engine. Since C4.5 decision tree algorithms 

tend to be simpler to understand than other data-driven 

approaches, it was decided to employ them. By doing a 

search over the space of potential decision trees to locate 
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one that suits the training data, the decision tree 

algorithm automatically learns a decision tree. 

However, they didn't apply any other algorithms for 

compression or validation. ANNs have been utilized to 

represent the system in many of the current supervised 

learning methods for systems health monitoring. When 

used to solve a pump diagnosis problem, he and Shi 

discovered that SVMs performed more accurately than 

ANNs. One significant disadvantage of neural network 

approaches is that most humans are unable to 

understand or interpret the ANNs models and also 

SVMs models suffer from a similar lack of 

comprehensibility.[21] 

 

5. Summary 

This survey presents a starting point to understand the 

concept of artificial intelligence and machine learning, 

its potential, requirements, and limitations with a strong 

focus on the space domain.  

We have given an introduction to the terminology of 

artificial intelligence and machine learning in the space 

domain. Building upon this terminology, we introduced 

important techniques suitable for the application on 

board and ground in the fields of anomaly detection and 

FDIR for health monitoring systems. Finally, we 

surveyed related work in the field of a health monitoring 

system based on AI techniques to show concepts of 

autonomous mission operations. 

Future missions tend to rely more and more on 

autonomous systems to meet safety and cost 

requirements and be as reactive as possible. Techniques 

of artificial intelligence and machine learning show the 

potential to not only assist in mission operations, 

planning, and scheduling but also to enable new 

missions that require immediate action by the spacecraft 

without the possibility to shift important decisions to the 

ground and also keep missions safer and more reliable. 
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