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Abstract 

Solar sails use sunlight to propel a vehicle through 

space by reflecting solar photons off a mirror-like 

surface made of light reflective material. To be able to 

work as an interplanetary cargo-ship, the solar sail area 

should be large enough to receive required acceleration 

from the sunlight. However, mechanical deploying 

mechanisms are not reliable to deploy such a large solar 

sail. This paper presents formation control of space 

robots for on-orbit assembly of large solar sails. 

Contrary to previous works, the dynamic equations of 

space robots in the formation are derived by considering 

relative motion of the space robots with respect to the 

sail hub orbiting the Earth. The uncertainties including 

external disturbances, unmolded dynamics, and 

parameter uncertainties, are considered as a single time-

varying term in the dynamic model. Then, an adaptive 

sliding mode controller combined with a second-order 

observer is expanded to control the on-orbit formation 

of space robots as well as resisting the disturbances. 

Finally, the efficacy of the proposed approach is 

demonstrated by a numerical simulation. 

Keywords: Solar Sail Assembly-Adaptive Sliding 

Mode Control-Formation Control 

 

1. Introduction  

Solar sails are large, flexible, reflective surfaces that 

utilize the solar radiation pressure to propel in space in 

a similar way that kites employ the wind to lift 

themselves up. They are accelerated by the momentum 

gained from the solar photons when they hit and reflect 

off the sail membrane [1]. Since the solar sails use the 

solar energy, there is no need to supply propellant. Thus, 

they provide affordable propulsion, longer mission 

lifetimes, larger payload mass, access to unreachable 

orbits such as non-Keplerian and high solar latitude 

orbits, and high speeds in comparison with conventional 

propulsion systems [2]. Launched in 2010, 

Interplanetary Kite-craft Accelerated by Radiation of 

the Sun (IKAROS), made by the Japanese Aerospace 

Exploration Agency (JAXA), was the first 

demonstration of a spacecraft was being controlled by 

solar sails [3]. 

 To be capable of carrying larger payloads and 

working as an interplanetary cargo-ship, sail’s area 

should be increased to receive more acceleration from 

the sunlight [4]. For instance, to carry a payload on the 

order of a few tons, a sail with an area of 1 km2 is 

required [5]. But, for these ambitious flagship-class 

missions, there are some key technology challenges as 

follows [6]: 

 Deployment of very large sail membranes 

 Reducing areal density to the orders of 2.5-25 

g/m2  

 Degradation of sail material due to the 

thermal effects and ultraviolet radiation 

 Attitude control of deployed solar sail 

 Sail packing in a very efficient way 

This paper focuses on the first issue, which is to 

provide an efficient solution for deployment of the sail. 

Generally, a mechanical mechanism must be designed 

in order to deploy the solar sail automatically. However, 

most of the mechanisms, such as the spinning expansion 

devices [3] and deployable booms [7], are not reliable 

when the sail-craft size is in the orders of several 

kilometers. An efficient approach that is not affected by 

the system size is employing the on-orbit servicing 

robots to pull the sail to the desired position. Moreover, 

the space robots can be used for other missions 

including assembly of the next solar sail after finishing 

their mission [4]. Bo and Gao [8] presented a sliding 

mode control approach for a formation consisting of two 

space robots in which a radial basis function-based 

neural network is employed to adjust the parameters of 

the control law. Queiroz et al. [9] developed a nonlinear 

adaptive controller to control the relative position of two 

spacecraft in a formation flying that overcomes the 

model uncertainties and external disturbances. Hu et al. 

[4] studied the on-orbit assembly of a 1 square kilometer 

solar sail employing a space robot formation. They 

proposed an adaptive sliding mode controller combined 

with a disturbance observer to control the formation of 

space robots. However, to simplify the dynamics and 

control problem, the formation of space robots has been 

considered as a formation of ground robots. Therefore, 

the formation dynamic model is a set of four scalar 

linear equations corresponding to the motion of four 

robots. 

This paper develops the dynamics and control 

problem of Ref. [4] for on-orbit formation of space 

robots that has been employed to deploy the large solar 

sail. Contrary to Ref. [4], the full nonlinear dynamics 

describing the relative motion of space robots in the 

formation flying is considered in this paper. The orbital 

dynamics of the solar sail is taken into account and the 

motion of space robots on the solar sail is modeled as 

relative motion with respect to the solar sail. Thus, the 

dynamic model of the space robot formation will be 

derived as vectorial nonlinear equations. Then, the 

adaptive sliding mode controller combined with the 
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disturbance observer is expanded for the obtained model 

of the nonlinear multi input-multi output system.  

 

2. The Dynamic Model of Space Robot Formation 

Flying 

2.1. Sequence of on-orbit assembly of the solar sail 

The solar sail consists of a hub that contains the wrapped 

sail before extension, four booms as the supporting 

structure, and four wings in four quadrants as shown in 

Fig. 1 [4]. 

Each of the space robots has three manipulators 

that by employing two of them it could move on the 

boom while holds the sail by the third one. During the 

on-orbit deployment of the sail, the first and second 

moments of mass of the sail as well as the solar pressure 

and gravitational torques will change dramatically due 

to the large size of the sail. Thus, in order to keep the 

solar sail attitude stable, the sequence of on-orbit 

assembly is considered as shown in Fig. 2 [4]. The 

wings in the first and second quadrants are deployed at 

first and then, the other wings in the third and fourth 

quadrants will be expanded. 

 

 
Fig. 1: The non-spinning solar sail 

 

 
(a) 

  
(b) 

Fig. 2: The sequence of on-orbit deployment of the 

solar sail. (a) expanding the wing in quadrants Ⅰ & Ⅲ. 

(b) expanding the wing in quadrants Ⅱ & Ⅳ. 

 

2.2. Dynamic modeling 

In this subsection, a nonlinear dynamic model will be 

derived for the space robot formation. The leader-

follower approach is considered for the formation. 

Firstly, the equations are developed for the relative 

motion of the fourth robot with respect to the on-orbit 

solar sail and then, the relations are generalized for each 

of the space robots. 𝑅4 is chosen as the leader and 𝑅3 is 

its direct follower. Thus, the relative trajectory of 𝑅4 

with respect to the solar sail is the desired trajectory, and 

𝑅3 follows the actual trajectory of 𝑅4. As the same way, 

𝑅2 and 𝑅1 track the actual paths of 𝑅3  and 𝑅2 , 

respectively. Moreover, it is assumed that the solar sail 

is in a circular orbit around the Earth with a constant 

angular velocity ω. The schematic representation of the 

relative motion of the fourth space robot with respect to 

the solar sail is shown in Fig. 3.  

According to the Fig. 3, the following assumptions 

are made: 

1. The inertial coordinate system 𝑋𝑌𝑍 is attached to the 

center of the earth. 

2. �⃗� (𝑡) ∈ ℝ3 is the position vector from the centre of 

the inertial frame to the centre of the solar sail. 

3. The coordinate frame 𝑥𝑠𝑦𝑠𝑧𝑠 is attached to the solar 

sail hub so that the 𝑥𝑠 axis in the opposite direction of 

tangential velocity, the 𝑦𝑠 axis along the �⃗�  vector, and 

the 𝑧𝑠  axis perpendicular to 𝑥𝑠  and 𝑦𝑠  establish a right 

handed coordinate system. 

4. 𝜌 (𝑡) ∈ ℝ3  is the relative position vector from the 

origin of the solar sail coordinate system to the space 

robot 𝑅4. 

The nonlinear dynamic equations of the solar sail and 

space robot 𝑅4  with respect to the inertial frame 𝑋𝑌𝑍 

are respectively written as follows: 

𝑚𝑠�⃗̈�
 + 𝑚𝑠(𝑀 +𝑚𝑠)𝐺 (�⃗� ‖�⃗� ‖

3
⁄ ) = �⃗� 𝑠 + 𝐹 𝑠

𝑑 (1) 

𝑚𝑅4(�⃗̈�
 + �̈� )

+ 𝑚𝑅4(𝑀 +𝑚𝑅4)𝐺 ((�⃗� + 𝜌 ) ‖�⃗� + 𝜌 ‖
3

⁄ )

= 𝐹 𝑅4
𝑐 + 𝐹 𝑅4

𝑑  

(2) 

 
Fig. 3: schematic representation of the relative motion 

of the fourth space robot with respect to the solar sail 

from the top view 

 

Where 𝑚𝑠 and 𝑚𝑅4 are masses, 𝐹 𝑑𝑠, 𝐹 𝑑𝑅4 ∈ ℝ
3 are 

disturbing force vectors, and �⃗� 𝑠(𝑡), �⃗� 𝑅4(𝑡) ∈ ℝ
3 are 

controlling force vectors for the solar sail and space 

robot 𝑅4, respectively. Also, M and G are the Earth’s 
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mass and the universal gravity constant, respectively. 

Due to the fact that 𝑀 ≫ 𝑚𝑠, 𝑚𝑅4 , the Eqs. (1) and (2) 

are simplified as follows: 

𝑚𝑠�⃗̈�
 + 𝑚𝑠𝜇 (�⃗� ‖�⃗� ‖

3
⁄ ) = �⃗� 𝑠 + 𝐹 𝑠

𝑑 (3) 

𝑚𝑅4(�⃗̈�
 + �̈� ) + 𝑚𝑅4𝜇 ((�⃗� + 𝜌 ) ‖�⃗� + 𝜌 ‖

3
⁄ )

= 𝐹 𝑅4
𝑐 + 𝐹 𝑅4

𝑑  
(4) 

Where 𝜇 = 398600 𝑘𝑚3 𝑠2⁄  is the standard 

gravitational parameter. After applying some algebraic 

simplifications on Eqs. (3) and (4), the describing 

dynamic equation of the space robot 𝑅4 with respect to 

the solar sail expressed in the 𝑋𝑌𝑍 coordinate system is 

written as follows: 

𝑚𝑅4�̈� + 𝑚𝑅4𝜇 (
�⃗� + 𝜌 

‖�⃗� + 𝜌 ‖
3 −

�⃗� 

‖�⃗� ‖
3)

= 𝐹 𝑅4
𝑐 +

𝑚𝑅4

𝑚𝑠

�⃗� 𝑠 + 𝐹 𝑅4
𝑑

−
𝑚𝑅4

𝑚𝑠

𝐹 𝑠
𝑑 

(5) 

In order to express the Eq. (5) in the  coordinate 𝑥𝑠𝑦𝑠𝑧𝑠 
system, first it should be noted that the relative position 

vector 𝜌 (𝑡)  is written as follows in the 𝑥𝑠𝑦𝑠𝑧𝑠 
coordinate system: 

𝜌 = 𝑥𝑖�̂� + 𝑦𝑗�̂� + 𝑧�̂�𝑠 (6) 

Also, the constant angular velocity vector ω equals 𝜔�̂�𝑠. 

Thus, the relative acceleration �̈� (𝑡)  is written in the 

following form: 

�̈� = (�̈� − 2𝜔�̇� − 𝜔2𝑥)𝑖�̂�
+ (�̈� + 2𝜔�̇� − 𝜔2𝑦)𝑗�̂�
+ �̈��̂�𝑠 

(7) 

Moreover, the vector �⃗� = ‖�⃗� ‖𝑗�̂�  is constant in the 

moving coordinate system 𝑥𝑠𝑦𝑠𝑧𝑠 . By substituting the 

right hand side of Eq. (7) into the Eq. (5), the nonlinear 

dynamic equation of the space robot 𝑅4 with respect to 

the solar sail is: 

𝑚𝑅4�̈� + 𝐶(𝜔)�̇� + 𝑁(𝑞 , 𝜔, �⃗� , �⃗� 𝑠) = 𝐹 𝑅4
𝑐 + 𝐹 𝑅4

𝑑  (8) 

Where the relative position vector 𝑞 (𝑡) ∈ ℝ3 is equal 

to: 

𝑞 (𝑡) = [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡)]𝑇 (9) 

The Coriolis matrix 𝐶(𝜔) ∈ ℝ3×3 is as follows: 

𝐶(𝜔) = 2𝑚𝑅4𝜔 [
0 −1 0
1 0 0
0 0 0

] (10) 

𝑁(. ) ∈ ℝ3 is a nonlinear expression that is defined in 

the following form: 

𝑁(𝑞 ,𝜔, �⃗� , �⃗� 𝑠)

=

[
 
 
 
 
 
 
 
 
 𝑚𝑅4𝜇

𝑥

‖�⃗� + 𝑞 ‖
3 −𝑚𝑅4𝜔

2𝑥 +
𝑚𝑅4

𝑚𝑠

𝑢𝑠𝑥

𝑚𝑅4𝜇 (
𝑦 + ‖�⃗� ‖

‖�⃗� + 𝑞 ‖
3 −

1

‖�⃗� ‖
2) − 𝑚𝑅4𝜔

2𝑦

+
𝑚𝑅4

𝑚𝑠

𝑢𝑠𝑦

𝑚𝑅4𝜇
𝑧

‖�⃗� + 𝑞 ‖
3 +

𝑚𝑅4

𝑚𝑠

𝑢𝑠𝑧
]
 
 
 
 
 
 
 
 
 

 
(11) 

Also, 𝐹 𝑑 ∈ ℝ
3 in Eq. (8) is the disturbance force vector 

that is defined as 𝐹 𝑑𝑅4 = −𝜇𝑅4�̇� 𝑅4. 

So far, the nonlinear dynamic equation of 𝑅4 has 

been achieved. The equation of motion of the space 

robot formation is obtained in the following form: 

𝑚𝑛�̈� + 𝐶(𝜔)�̇� + 𝑁(𝑞 , 𝜔, �⃗� , �⃗� 𝑠) =

𝐹 𝑛
𝑐 + 𝐹 𝑛

𝑑

𝑛 = 1,2,3,4

 (12) 

 

3. Controller Design 

3.1. Control Objective 

Knowing the desired path 𝑞 𝑑(𝑡) ∈ ℝ
3  for the leader 

space robot 𝑅4 with respect to the solar sail, the control 

objective is described as follows: 

lim
𝑡→∞

𝑒 𝑛 = 0 (13) 

Where, 

𝑒 𝑛(𝑡) = 𝑞 𝑛
𝑑(𝑡) − 𝑞 𝑛(𝑡) 𝑛 = 1,2,3,4 (14) 

The desired acceleration of robot 𝑅4 for 𝑡 < 𝑇 is chosen 

to be: 

�̈� 𝑅4
𝑑 = [𝐴sin (2𝜋𝑡 𝑇⁄ ) 𝐴cos (2𝜋𝑡 𝑇⁄ ) 0]𝑇  (15) 

The desired acceleration is considered to be zero 

anywhere else. In Eq. (15), A and T are equal to 1.8 ×
10−3 and 1500, respectively. 

 

3.2. Adaptive sliding mode control formulation 

In this subsection, the proposed controller of Ref. [4] 

will be modified to control the on-orbit formation of 

space robots. The system dynamics (Eq. (12)) is 

rewritten assuming there is no control over the solar sail, 

i. e.  �⃗� 𝑠 = 0, as follows: 

𝑚𝑛�̈� − 2𝑚𝑛𝜔�̇� + 𝑚𝑛𝜇
𝑥

‖�⃗� + 𝑟 ‖
3 −𝑚𝑛𝜔

2𝑥

= 𝐹𝑛𝑥
𝑐 + 𝐹𝑛𝑥

𝑑  

(16) 

𝑚𝑛�̈� + 2𝑚𝑛𝜔�̇� + 𝑚𝑛𝜇(
𝑦 + ‖�⃗� ‖

‖�⃗� + 𝑟 ‖
3 −

1

‖�⃗� ‖
2)

− 𝑚𝑛𝜔
2𝑦 = 𝐹𝑛𝑦

𝑐 + 𝐹𝑛𝑦
𝑑  

(17) 

𝑚𝑛�̈� + 𝑚𝑛𝜇
𝑧

‖�⃗� + 𝑟 ‖
3 = 𝐹𝑛𝑧

𝑐 + 𝐹𝑛𝑧
𝑑  (18) 

As it can be seen from the above relations, the control 

force must be applied in any direction. It is clear from 

the Eqs. (16)-(18) that we are dealing with a multi-input-

multi-output system. Since, there is a control in each 

direction, a sliding surface must be defined for each 

input. Therefore, there is a controller for each space 

robot that should apply the control law in each direction. 

The sliding surfaces are chosen as follows: 

𝑆 𝑛
= [�̇�𝑛𝑥 + 𝜆𝑒𝑛𝑥 �̇�𝑛𝑦 + 𝜆𝑒𝑛𝑦 �̇�𝑛𝑧 + 𝜆𝑒𝑛𝑧]𝑇  

(19) 

Where λ is a positive constant. The control law in each 

direction is written in the following form: 

�⃗� 𝑛

= [

−𝐾𝐷𝑆𝑛𝑥 − 𝜆�̇�𝑛𝑥 − (𝜀0𝑥 + 𝜀�̂�)𝑠𝑖𝑔𝑛(𝑆𝑥)

−𝐾𝐷𝑆𝑛𝑦 − 𝜆�̇�𝑛𝑦 − (𝜀0𝑦 + 𝜀�̂�)𝑠𝑖𝑔𝑛(𝑆𝑦)

−𝐾𝐷𝑆𝑛𝑧 − 𝜆�̇�𝑛𝑧 − (𝜀0𝑧 + 𝜀�̂�)𝑠𝑖𝑔𝑛(𝑆𝑧)

] 
(20) 

In which, 𝐾𝐷 > 0, and 𝜀̂ is updated by the following 

differential equations [4]: 
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𝜀̂ ̇𝑛 =

[
 
 
 
 
 
1

𝜅
(−𝜏𝜀�̂�𝑥 + |𝑆𝑛𝑥|)

1

𝜅
(−𝜏𝜀�̂�𝑦 + |𝑆𝑛𝑦|)

1

𝜅
(−𝜏𝜀�̂�𝑧 + |𝑆𝑛𝑧|)]

 
 
 
 
 

 (21) 

In which, 𝜅 > 0 is the sensitivity coefficient of 𝜀̂. The 

smaller the κ is, the more sensitive the 𝜀̂̇ is to |𝑆|. Also, 

𝜏 > 0 is a small constant so that the expression −𝜏𝜀̂ 
causes 𝜀̂  remain a small constant when |𝑆|  is in the 

neighborhood of zero. Moreover, In Eq. (20), 𝜀0 > 0 is 

the constant part of the adaptive gain (𝜀0 + 𝜀̂) as well as 

sets the minimum uncertainty tolerance capability for 

the controller. 

To avoid chattering, sign(S) can be replaced with 

the hyperbolic tangent function [4], which results in the 

following relationships. 

�⃗� 𝑛

= [

−𝐾𝐷𝑆𝑛𝑥 − 𝜆�̇�𝑛𝑥 − (𝜀0𝑥 + 𝜀�̂�)𝑡𝑎𝑛ℎ(𝜂𝑆𝑥)

−𝐾𝐷𝑆𝑛𝑦 − 𝜆�̇�𝑛𝑦 − (𝜀0𝑦 + 𝜀�̂�)𝑡𝑎𝑛ℎ(𝜂𝑆𝑦)

−𝐾𝐷𝑆𝑛𝑧 − 𝜆�̇�𝑛𝑧 − (𝜀0𝑧 + 𝜀�̂�)𝑡𝑎𝑛ℎ(𝜂𝑆𝑧)

] 
(22) 

Where the scalar η determines the similarity between 

𝑡𝑎𝑛ℎ(𝜂𝑆) and sign(S). 

Eventually, the actual control forces are computed 

by the following relations: 

𝐹 𝑛
𝑐

= {
𝑚𝑛(�̈� 𝑛

𝑑 − �⃗� 𝑛) + 𝐶(𝜔)�̇� 𝑛 + 𝑁(𝑞 , 𝜔, �⃗� ),

𝑛 = 𝑁

𝐹 𝑛+1
𝑐 − �⃗� 𝑛, 𝑛 = 𝑁 − 1,… ,1

 

(23

) 

 

3.3. Disturbance observer 

As it can be seen from the Eq. (22), measuring the 

translational velocity of space robots is required. 

However, obtaining the velocity information of a 

maneuvering space robot is difficult and even 

measurement noise will be added to the system. 

Therefore, to improve the controller performance, the 

second-order observer with finite time convergence [4], 

[10] is modified to estimate disturbance in any direction 

for each space robot and then compensate it in the 

controller. The block diagram of the controller 

combined with the second order observer is shown in 

the Fig. 4. Note that the inputs and outputs of the blocks 

in the Fig. 4 are vector contrary to Ref. [4]. 

 
Fig. 4: block diagram of the controller combined with 

the second order observer 

 

According to Eq. (14), to adapt the observer for the 

problem considered in this paper, the error dynamics 

can be written as follows: 

�̈� 𝑛(𝑡) = �̈� 𝑛
𝑑(𝑡) − �̈� 𝑛(𝑡) =

�̈� 𝑛
𝑑(𝑡) −

1

𝑚𝑛

(−𝐶(𝜔)�̇� 𝑛 − 𝑁(𝑞 , 𝜔, �⃗� ) + 𝐹 𝑛
𝑐 + 𝐹 𝑛

𝑑)

𝑛 = 1,… ,4

 (24) 

Without loss of generality, it is assumed that the masses 

of space robots are 𝑚𝑛 = 1 and ∆𝜌 𝑛 = −𝐹 𝑛
𝑑 as well as 

�⃗� 𝑛 = �̈� 𝑛
𝑑 − 𝐹 𝑛

𝑐. To rewritten the error dynamics is state 

space form, the following variables are considered: 

{
 
 

 
 𝑥 1 = 𝑒 𝑛

𝑥 2 = �̇� 𝑛
∆�⃗� = ∆𝜌 𝑛
�⃗� = �⃗� 𝑛

 (25) 

So, we have: 

{
�̇� 1 = 𝑥 2

�̇� 2 = ∆�⃗� + �⃗� 
 (26) 

The second-order observer is considered as follows: 

{
 
 
 
 
 

 
 
 
 
 �̇̂� 1𝑛 = 𝜒 1𝑛

𝜒 1𝑛 = �̂� 2𝑛 − 𝛾3|�̂� 1𝑛 − 𝑥 1𝑛|
2 3⁄

×

𝑠𝑖𝑔𝑛(�̂� 1𝑛 − 𝑥 1𝑛)

�̇̂� 2𝑛 = �⃗� 𝑛 + ∆�⃗̂� 𝑛

∆�⃗̂� 𝑛 = −𝛾2|�̂� 2𝑛 − 𝜒 1𝑛|
1 2⁄

×

𝑠𝑖𝑔𝑛(�̂� 2𝑛 − 𝜒 1𝑛) + �̂� 3𝑛

�̇̂� 3𝑛 = −𝛾1 × 𝑠𝑖𝑔𝑛(�̂� 3𝑛 − ∆�⃗̂� 𝑛)

 (27) 

In the Eq. (27), �̂� 1, �̂� 2, ∆�⃗̂� , and  �̂� 3  are the observed 

values of 𝑥 1, 𝑥 2, ∆�⃗� , and �⃗� , respectively. Also, 𝛾1, 𝛾2 , 

and 𝛾3 are constants to be chosen. 

Note that the above observer should be employed for 

any of the space robots in each direction. For this reason, 

the relations in Eq. (27) are vector.  

 

4. Simulation and Results 

In order to simulate the problem, the system dynamics 

is represented in the state space form for 𝑛 = 1,2,3,4: 

{
�̇� 1𝑛

�̇� 2𝑛
} = {

𝑞 2𝑛

𝐹 𝑛
𝑐 + 𝐹 𝑛

𝑑 − 𝐶𝑞 2𝑛 −𝑁

𝑚𝑛

 (28) 

Where 𝐹 𝑛
𝑑 = −𝜇𝑛�̇� 𝑛, 𝜇1 = 0.56, 𝜇2 = 0.48, 𝜇3 =

0.32, and 𝜇4 = 0.65. The simulation parameters have 

been reported in Table 1. 

 
Table 1: Simulation parameters 

parameters value 

KD 2 

λ 5 

𝜀0 0.001 

κ 10 

𝜏 0.01 

η 10 
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The masses of robots are equal to 𝑚1 = 𝑚2 = 𝑚3 =
𝑚4 = 𝑚𝑟𝑒𝑎𝑙 = 200 𝑘𝑔  in the dynamic model. To 

examine the robustness of the presented method in the 

presence of parametric uncertainties, it is assumed 20% 

mass uncertainty in the controller. Thus, we have 𝑚1 =
𝑚2 = 𝑚3 = 𝑚4 = 1.2𝑚𝑟𝑒𝑎𝑙 = 240 𝑘𝑔. 

4.1. Results and discussion 

In the following, the actual and desired paths are drawn 

in a graph for each robot to compare. 

 

 
Fig. 5: The actual and desired paths for space robot 1 

along x direction, y direction, and z direction 

 

 
Fig. 6: The actual and desired paths for space robot 2 

along x direction, y direction, and z direction 

 

 

Fig. 7: The actual and desired paths for space robot 3 

along x direction, y direction, and z direction 

 

 

Fig. 8: The actual and desired paths for space robot 4 

along x direction, y direction, and z direction 

 

The tracking error of desired path for each of the space 

robots along x, y, and z direction is drawn in Figs. 9-

12. 

 

 
Fig. 9: The tracking error for space robot 1 

 

 
Fig. 10: The tracking error for space robot 2 
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Fig. 11: The tracking error for space robot 3 

 

 
Fig. 12: The tracking error for space robot 4 

 

The control forces of the space robots are shown in 

Figs. 13-16. 

 

 
Fig. 13: The control force of the space robot 1 

 

 
Fig. 14: The control force of the space robot 2 

 

 
Fig. 15: The control force of the space robot 3 

 

 
Fig. 16: The control force of the space robot 4 

 

As it can be seen from the Figs. 9-12, the controller truly 

realizes the control objective. The trajectory tracking 

error of the fourth robot is on the order of 10−4 meter i. 

e., 0.1 millimeter as well as for the third robot it is on 

the order of centimeter. Also, as it is clear from the Figs. 

5-8, all of the space robots have tracked the desired path 

well. 

 

5. Concluding Remarks and Future Work 

This paper presents the formation control of space 

robots in order to on-orbit assembly of large solar sails. 
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The full nonlinear dynamic model of the formation 

consisting of four on-orbit space robots is derived using 

the leader-follower approach. Then, an adaptive sliding 

mode controller is developed for the derived model. 

Moreover, a second-order observer is embedded in the 

system to overcome the uncertainties including the 

unmolded dynamics, parameter uncertainties, and 

external disturbances. Eventually, simulation results 

indicate that the space robots track the desired trajectory 

with a good accuracy to deploy the solar sail. Future 

works will focus on considering the attitude control of 

the solar sail during the assembly of the sail and also the 

flexibility of the supporting booms of the sail. 
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