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Abstract— In this paper, the linear quadratic regulator controller is designed for a specific class of discrete time-delay 
systems. The controller, which can satisfy the constraints and compensate for the destructive effects while satisfying 
the constraints, has attracted much attention. The presence of time-varying delays at local control inputs, which can 
destabilize the system and disrupt the process, has also been investigated. A satellite orbit system is considered that 
corrects the position by a predictive control method based on the constrained model. The aim is to design the linear 
quadratic regulator controller based on the predictive controller by the reduction method so that the closed-loop system 
is asymptotically stable for all acceptable uncertainties and time delays and minimizes the effect of external 
disturbances. This requires a high speed and accurate controller to be able to meet the desired control objectives as 
much as possible. Also, by the theory of stability proof theory with Lyapunov krasovskii function and in the form of 
linear matrix inequalities, conditions independent of the delay for establishing exponential convergence are obtained. 
Finally, the effectiveness of the results obtained from the proposed control scheme is demonstrated by a numerical 
example of the position of the satellite in order to keep it in orbit and reduce fuel consumption. 
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1. Main text  

Satellites are influenced by the forces that cause the satellite to move away from the orbit for which it was 
designed. To counter these forces, satellites in orbit are equipped with control propellants to compensate for these 
constraints and keep the satellite in orbit. On the other hand, due to the lifespan of satellites, which are several 
years old, a large amount of fuel mass is required, which shows the importance of optimal fuel consumption. Of 
course, it should be noted that another reason for optimal fuel consumption is the high cost of launching satellites 
per mass. Also, due to design limitations, the mass of fuel along with the satellite should not exceed a certain 
amount. Automatic control of the satellite orbit is that the satellite itself can maintain its position. Automatic 
control will reduce costs and increase mission accuracy, eliminating the need for an equipped and advanced 
ground station, for example. Also, by using automatic orbital control, the need for fuel will be reduced ,and the 
weight of the satellite will be reduced, which will reduce the cost of launching and building the satellite ]١[ . 

Predictive control is an optimal control strategy that minimizes the cost function for the system by predicting 
the dynamic model of the system. This control can simultaneously achieve several control objectives by 
considering the constraints on the input and output of the system and ensuring optimization. This control method 
can be implemented online. Due to the limitations of satellite fuel, which leads to optimal fuel consumption, as 
well as the constraints on the amount of propulsion power of the system output. Model-based predictive control 
is a good choice for automatic satellite orbit control. Predictive control based on the linearization of the dynamic 
equations governing the satellite in space revolves around the main orbit. The cost function is considered to be 
square, which will reduce the volume of calculations to find the optimal point. The simulations show that the 
combined predictor control with linear quadratic regulator (LQR), by considering the constraints on the input and 
output of the system, has significantly reduced fuel consumption compared to the linear quadratic regulator only 

]٢[ . 
Nowadays, the issue of examining the limitations and controlling the system in the presence of these constraints 

is one of the important and widely used issues in theoretical research and practical activities. Another issue that 
challenges the controller design is the issue of delay, which is unavoidable in many physical systems and is a 
major cause of instability in systems ]٣[ . Delayed systems can be classified into input delay, state delay, and 
output delay, which may be single or multiple delays. Recently, systems with delayed control input have received 
more attention ]٤[.  According to the Lyapunov Krasovskii function (LKF) method, stability conditions are usually 
obtained by linear matrix inequalities (LMI) ,which can be solved using various computational tools. Although a 
number of studies have analyzed stability specifically for systems with time-varying delay at input, ideas for 
improving stability and scrutiny have not been used. The purpose of the design is to create a control system that 
changes in the current state of the system have the least effect on the output. 

In recent years, the issue of the stability of delayed linear systems has been investigated. In these papers, some 
sufficient conditions for proving the stability in delay are presented by Lyapunov inequality methods or Ricketts 
inequalities ]٩-٥[ . In [10], the prediction control model for a class of fuzzy discrete systems that are subject to 
variable time-delayed delays and perturbations is studied. The proposed method is razumikhin, which includes a 
Lyapunov function related to state space not added to the main dynamics of the system compared to the Krasovskii 
method. The system considered in this paper is decomposed into several subsystems, each of which is represented 
by a fuzzy Takagi-Sugeno (T-S) model, and the relationship between the two subsystems is also considered. Since 
the main part of the model prediction control is optimization, the hierarchical design for the optimization problem 
is performed by the linear matrix inequality (LMIs) method. Thus the closed loop system is asymptotically stable. 
[11] provides a general framework for the LQR-controlled system, taking into account uncertainties, 
perturbations, and time delays. Sufficient conditions are provided by Lyapunov-Krasovskii function and Lipschitz 
one-sided condition and quadratic internal boundary inequality to ensure asymptotic stability. A neural controller 
with predictive controller is also provided for a class of delayed systems in the presence of unknown dead zone, 
external perturbations, and stimulus faults in [12]. In this paper, Lyapunov-Krasovskii quadratic functions for 
dealing with system delays are introduced. Unknown system functions are estimated using radial basis neural 
networks. The delimitation of all closed-loop signals is ensured by Lyapunov analysis and it is proved that the 
tracking errors converge to a small area of origin. Therefore, the issue of proving stability for delayed systems 
must be considered, as to date, very few stability results are available in the researched researches with the aim of 



 
 

reducing costs. As a result, it is essential to provide innovative design methods for multipurpose controllers in 
order to combine multiple controllers in order to improve performance. 

Compared to existing studies, this is the main contribution of this article. In the second part, mathematical 
modeling of satellite motion in orbit is described. In the third stage, the LQR controller problem is solved based 
on the predictive control and the method of reducing the conditions independent of the improved delay. As a 
result, the stability of the closed-loop system and in a comprehensive structure, the stability of the system is 
exerted by matrix inequalities. In the fourth section, and in fact the simulation of the article, the simulation results 
are presented. Finally, in the fifth and final part of the article, the general results of the article are stated. 

2. Mathematical modeling of satellite motion in orbit 

In this section, the orbital dynamics equations on the Earth satellite shown in Figure 1 are expressed as (1). 
 

 

Figure 1. Physical interpretations of orbital satellite elements ]١٠[  
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Where ܨ௫, ܨ௬ and ܨ௭ are the components of the control forces acting on the satellite by the propellants, ߙ௣ೣ  , 
݊ ௣೥accelerating the satellite and m the mass of the satellite. Also, according to the relationߙ ௣೤ andߙ ൌ
√ሺ3^ݎ/ߤ	ሻ, r is the distance of the satellite from the center of the earth and ߤ is the constant of gravity. These 
linear equations are the difference between the motion of the satellite and the main orbit, the purpose of the control 
design is to reduce this difference to zero and keep the satellite in the reference orbit, ie zero error. Considering 
the state variables as ݔ ൌ ሾݔߜ	ݕߜ	ݖߜ	ݔߜሶ ሶݕߜ	 	ݑ ሶሿ and the control input vectorݖߜ	 ൌ 	 ሾܨ௫	ܨ௬	ܨ௭ሿ, the state space 
equations of the linear system are (2). 
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In order to implement predictive control, the system equations must be expressed discretely, which is done by 
the Euler step-forward method, which is a first-order method. 

3. Infinite horizon LQR for delayed discrete systems based on predictive controller 

The purpose of designing a satellite orbit control is to return the satellite to its original orbit, minimizing fuel 
consumption and reducing power. To achieve the stated goals, a model-based predictive control is designed. The 
control method ensures optimality by considering the performance and constraints on the system. Predictive 
control by solving the problem of optimal control and predicting the future, it generates a control signal, which is 
done by considering the cost function and constraints on the input and state of the system at any time step. Is 
accepted in such a way that at each time step, it calculates a sequence of control inputs for future moments of the 
system and applies the first sentence as input to the system using the reducing horizon method, and after measuring 
The output and the error between the system and the desired state will be repeated in the next time step of this 
process until the error rate reaches zero or an acceptable value. By linearly considering the equations, the 
constraints being equal and unequal, and the cost function being quadratic, the prediction control will be 
formulated as a quadratic problem that has a small amount of computation to implement online ]١١[ . 

Consider a discrete linear system for the N stabilization problem of the input delay subsystem by differential 
equations (3) with fixed matrices and constant delay h௜௝. 

)٣( ( 1) ( ) ( )x k Ax k Bu k h     

Where ݇ ∈ ܼା, h ∈ ܼାand ݔሺ݇ሻ ∈ ܴ௡೔	are the state vectors and ݑ௜ሺ݇ሻ ∈ ܴ௡ೠ೔ are the control inputs of the 
system. ܣ௜ ∈ Թ௡೔ൈ௡೔ and ܤ௜ ∈ Թ௡೔ൈ௡ೠ೔ are nominal fixed matrices with appropriate dimensions. 

The initial conditions and in fact the primary function are considered as relation (4). 
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By the additive method [16], the additive state vector can be considered as (5). 
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In this case, the delayed system becomes a system without delay (6). 
)٦( ( 1)( )( 1) ( ) ( ),      k ,     x ( ) ,

0 . . .

0 . . . 0 0 0

. . . . .
,         B

. . . . .

. . . . .

0 . . . 0 0 0

ij i jh n n

aug aug aug aug aug

i ij i ij

n

aug aug

n

x k A x k B u k Z k

A A B B

I

A

I

 
    

   
   
   
   

    
   
   
   
    



 

It should be noted that the ܣ௔௨௚ matrix is unique. Consider the LQR problem with infinite horizon (7) 
considering the initial conditions (4). Predictive control is a constrained optimal control that ensures optimization 
of the system despite the constraints on the inputs and dynamics. Constraints are applied systematically in 
predictive control, and as the complexity of the constraints increases, the controller's resistance to uncertainties 
and perturbations will increase. The cost function for this controller is of the square type, which includes the 
control input and output terms of the system, so that by minimizing fuel consumption, the accuracy of following 
the reference path is increased and the error caused by Disturb the forces to be compensated. The goal is to find 
the control law ࢛ in such a way that the stable system becomes asymptotic and becomes a quadratic cost function. 
Q and R are square weight matrices for setting cost function parameters, which increase the control accuracy and 



 
 

reduce energy consumption by adjusting these matrices. The cost function consists of two sentences, the first of 
which is to consider the system error between the current state and the output of the system, and the second of 
which is to minimize energy consumption. To evaluate the performance of the predictive controller, a second-
order regulator controller is considered. The cost function considered for the second-order regulator is (7). 
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As a result, with the additional method, the delayed LQR problem becomes a delayed LQR problem. The LQR 
problem for a system without delay is that if the matrix pair ሺܣ௔௨௚, ,௔௨௚ܣis stable and the matrix pair ሺ	௔௨௚ሻܤ ܳ௔௨௚ሻ 
is observable, then an optimal control rule for the system without delay is (8) there is. Of course, it should be 
noted that if the matrix pair ሺܣ, ሻ (for ݄௜௝ܤ ൌ 0ሻ)) is stable, then the matrix pair ሺܣ௔௨௚,  .௔௨௚ሻ will be stableܤ
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That the matrix P is a unique positive response given by the time-discrete algebraic Richter equation (DARE) 
(9). 
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In which case the matrix ܣ௔௨௚ ൅ ,௜ܭ௔௨௚ሾܤ  ௜௝ሿ is stable. This leads to optimal feedback (10) with distributedܭ
delay for the main system. 

)١٠( ( ) { ( ), ( 1),..., ( ), ( ), ( 1),..., ( )}i i i j j ju k Kcol x k u k u k h u k u k u k h      

This result is obtained from the Hautus Criterion [17] with the following proof. 
Proof: The following matrix has full rank for all |s| ൒ 1	because for |s| ൒ 1 the matrix ሾsI୬ െ A			Bሿ	has full 

rank for the extension system. In this case, the main system and in fact the system are stable without delay. 
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Therefore, if the matrices ሺA, B, √Qሻ are stable and observable (for h ൌ 0), then there exists a unique optimal 
controller in form (10) in which the definite unique positive response P is obtained from the discrete algebraic 
Richter equation. Optimal control (8) has a distributed delay at the input that, like the controller, is based on a 



 
 

forecast for a continuous system. Assuming the system is considered and the initial function and cost function and 
application of reduction method, which is mainly considered for input delay systems, to derive a reduced response 
answer to the LQR problem with input delay, from the design discussion on the basis of prediction is used. By 
defining vሺkሻ ൌ uሺk െ hሻ	the cost function J௛ can be written as (12). 
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According to Equations (12), ܬ௜௛	sentences contain fixed functions that are known and cannot be changed. 
Functions such as control inputs that can be changed for design appear in ܬ௜̅௛ sentences. Thus the ܬ௜௛	minimization 
for the above system leads to the ܬ௜̅௛	minimization in the system direction without delay by defining the v function 
based on u. 
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Now if the matrix pair ሺA, Bሻ is stable and the matrix pair ሺA, √Qሻ is observable, then the unique optimal control 
of the latter problem will be (14). 
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Where P is the unique non-negative response of the discrete algebraic rickety equation. In addition, optimal 
feedback stabilizes the closed-loop system. Now an important point to note is that with the discussions done, the 
function ν is obtained, which with a few modifications can be obtained to control the function u according to 
Equation (15). 
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By changing the upper and lower limits of Sigma in Equation (15), Equation (16) is obtained. 
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Also, the optimal value of ܬ௛
∗ as (17) is obtained by the optimal control. 
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The method of reduction to discrete indefinite linear systems with delayed input has also been developed. 
Consider the main system with indefinite and non-small delays τ୩ ൌ h ൅ η୩. 
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In this system, h is a fixed nominal value and |η୩	| ൑ ߤ ൏ |݄ indicates an indefinite delay. By changing the 
variable, a system relation (20) is obtained. 
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In this case, due to the variability of the delay in the system, the direct reduction method can not be used, so 
the variable change method is considered to solve the continuation of the problem. Now suppose there exists an 
interest K such that the matrix A ൅ BK		is stable. In this case, the feedback uሺkሻ ൌ Kzሺkሻ stabilizes the above 
system if system (21) is stable. 
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System stability can be analyzed using the Lyapunov Krasovskii method for systems with non-small latency. 
Therefore LKF (22) can be considered for the new system. 

)٢٢( 1 1

1 1( ) ( ) ( ) ( ) ( ), ( ) ( 1) ( ),    P>0,    R 0
k

T T

j s k j h

V k z k Pz k s R s s z s z s




  
 

   

        

The issue of Guaranteed Cost Control (GCC) for systems with variable delay indefinitely τ୩ ∈ ሾ0, hሿ	and fixed 
matrices A, B are examined. Now consider the cost function as (23). 
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For delayed systems or indeterminate matrices, optimal control and optimal cost (such as LQR) cannot be 
achieved. Instead, with the given initial condition ݔ଴, a control rule can be found that for all uncertainties reaches 
a guaranteed minimum cost of δ for J, i.e. J ൑ δ. A feedback control mode uሺkሻ ൌ Kxሺkሻ is provided for an initial 
condition ݔ଴ that for all indefinite delays τ୩	the minimum guaranteed cost value Jሺݔ଴ሻ ൑ δ can be achieved. The 
closed loop system is in the form of (24). 
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Proof: Consider the standard Lyapunov candidate function (25) for the exponential stability of the system with 
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Now if it finds α ൐ 0 that negates the expression (26), then the closed-loop system becomes stable. 
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In this section, by considering the addition vector as (27), the desired LMI is obtained using  
Schur complement [12]. 

)٢٧( ( ) { ( ), ( ), ( ), ( )}kk col x k y k x k h x k     

)٢٨( 
11 12 12 12 2 1

22 3 1
1

12

12 12

11 2 2

12 2 3

2
22 3 3

|

| 0
* 0

0, ,|
* * ( )

* * * 2
* |

( ) ( ) ,

( ) ,

T
T

T
T T

T

T

T T

T T

T

L
S R S P A

P A
A BKK D

S R R S

R S S
I

A I P P A I S R

P P A I P

P P P h R

 











 
   
  
      
    

            
     

   

    

 

As a result, by taking Sigma from the unequal sides from 0 to N, the guaranteed cost function (29) is obtained. 
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4. Simulation 

In this section, the performance of the model-based predictive control in maintaining the satellite on the 
reference orbit and combining it with the quadratic regulator control is shown linearly. The specifications of the 
reference circuit for implementing predictive control and physical parameters of the satellite are ݉ ൌ 100݇݃, μ ൌ
2.5 and ݎ଴ ൌ 1.3݉. By applying LMI and h ൌ 3		and ε ൌ 1 and the initial condition φሺെ݇ሻ ൌ ݁ି௞, ݇ ൑ 0of the 
high cost band equal to δ ൌ 0.0716	is obtained. The main goal is to eliminate the initial error and keep the satellite 
on the reference circuit with the highest accuracy and minimize fuel consumption. Q and R are weight matrices 
designed to control the control with values of ܴ ൌ ݀݅ܽ݃ሺ0.072	0.072	0.072ሻ and ܳ ൌ
݀݅ܽ݃ሺ0.023	0.023	0.023ሻ, also N = 10 is the forecast horizon. 

Figure 2 shows the error between the satellite and the reference circuit in the design of the LQR controller by 
the predictor controller and the reduction method. The initial error is eliminated after about 30 seconds and the 
satellite is placed in orbit with high accuracy. The constraint, which included preventing the satellite from 
decreasing relative to the reference orbit, was applied in the controller design.  



 
 

 
Figure 2: Error between satellite and reference orbit 

Figure 3 also shows the control force applied to return the satellite to its original orbit and maintain it. The 
maximum force exerted by the forecast control is 0.1 N, which indicates that the constraint on the control input 
is taken into account and significantly reduced. Due to the satellite disturbances, it moves out of the orbital 
plane, but when it reaches the maximum allowable distance, the controller is activated and returns the satellite to 
the main orbit with very little force. 

 
Figure 3: Control force applied to return the satellite to the main orbit 

5. Conclusion 

In this paper, the automatic control of the orbit of low altitude satellites using the LQR controller is performed 
by the predictor controller based on the reduction method. Predictive control calculates the optimal control input 
to apply to the system by solving the finite horizon optimization problem by considering the constraints on the 
delayed system. The superiority of this method over individual predictive control and optimal linear quadratic 
regulator control in reducing applied force, reducing fuel consumption and considering the existing physical 
constraints has been shown. Using the Lyapunov function, the stability of the closed-loop system is proved by the 
linear matrix inequality tool. The proposed design is practical and at the same time has few calculations, which 
could potentially provide a cost-effective solution for estimating delayed discrete systems. The simulation results 
show the reliability of the performance design in estimating the optimal state functions, which ensures the 
exponential convergence of the error. Comparing the resulting responses is the good performance of the proposed 
controller to meet the objectives of the main system. Future studies can also address the incidence of perturbations 
and stimulus saturation and uncertain consideration for system parameters and their effects. 
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