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Abstract. In this paper, we give a generalization of Chow–Rashevsky’s theorem for
control systems in regular connected manifolds modeled on convenient locally convex
vector spaces which are not necessarily normable. To indicate an application of our
approach to the infinite-dimensional geometric control problems, we conclude with a
novel controllability result on the group of orientation-preserving diffeomorphisms of the
unit circle, which has applications in, e.g., conformal field theory as well as string theory
and statistical mechanics.
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1. Introduction

Control theory is in fact the theory of prescribing motion for dynamical systems rather
than describing their observed behavior. One of the fundamental problems in control the-
ory is that of controllability, the question of whether one can drive the system from one
point to another with a given class of controls. A classical result in geometric control
theory of finite-dimensional (nonlinear) systems is Chow–Rashevsky’s theorem that gives
a sufficient condition for controllability on any connected manifold of finite dimension. In
other words, the classical Chow–Rashevsky’s theorem, which is in fact a primary theo-
rem in subriemannian geometry, gives a global connectivity property of a subriemannian
manifold. The classical result was proved independently and almost simultaneously by
Chow [2] and Rashevsky [6].

One of the main results of this paper gives a generalization of the above classical
result to the case of infinite-dimensional manifolds, which makes it possible to consider
even more general classes of “controllable” nonlinear systems –cf. Theorem 2.3. The
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approach we follow here is based on the ones initiated in the works of Jurdjevic, Agrachev,
Sachkov, Kriegl and Michor; for a through treatment, we refer the reader to [3], [4] and
the references given there. As a corollary of Theorem 2.3, we conclude our paper with a
novel controllability result on the group of orientation-preserving diffeomorphisms of the
unit circle (see Subsection 2.2).

2. Main results

To introduce the notion of completeness in infinite-dimensional locally convex vector
spaces, we need the following result that states when we call a vector space convenient.

Lemma 2.1. Let E be a locally convex vector space. E is said to be convenient if one
of the following equivalent (completeness) conditions is satisfied:

(1) Every Mackey-Cauchy net converges in E; i.e., E is Mackey complete.
(2) Every Mackey-Cauchy sequence converges in E.
(3) If M ⊂ E is absolutely convex closed bounded, then EM is a Banach space.
(4) For every bounded set M ⊂ E there exists an absolutely convex bounded set

M ′ ⊇M such that EM ′ is a Banach space.

The key to formulating the main results of this paper is the following lemma.

Lemma 2.2. Let E be a convenient real locally convex vector space, and B ⊂ E be a
closed nonempty proper subset. Then there exists a boundary element a∗ ∈ B, an open set
U ⊂ E containing a∗, and a solid cone

Ca∗ := {a∗ + t (x− a∗) | x ∈ X , t ≥ 0} ,

such that U ∩ Ca∗ ∩B = {a∗}, where X ⊂ E is some convex closed set.

2.1. A Chow–Rashevsky theorem. In our study of control systems, we always
assume that the state space M is a smooth manifold modeled on a locally convex space.
In what follows, F ⊂ Vec (M) stands for any family of complete smooth vector fields. Thus
each element X ∈ F generates a one-parameter group of diffeomorphisms

{
etX | t ∈ R

}
=

flow of X in M . Let P (F) =: P denote the group of diffeomorphisms of M generated by
flows

{
etX | t ∈ R

}
X∈F

of F . Each element Φ of P ⊂ Diff (M) is of the form

Φ = etkXk ◦ etk−1Xk−1 ◦ · · · ◦ et1X1 ,

for some k ∈ N, t1, . . . , tk ∈ R and some vector fields X1, . . . , Xk ∈ F . In fact P (F) = P
acts on M in the obvious way and partitions M into the sets P (x) = {Φ (x) | Φ ∈ P} for
x in M .

Since the set Vec (M) of all smooth vector fields on M has the structure of a real Lie
algebra under the Lie-bracket operation, to the given F ⊂ Vec (M) there corresponds the
Lie subalgebra LieF of Vec (M) generated by F . The evaluation of LieF at x ∈ M will
be denoted by LiexF = {V (x) | V ∈ LieF}.

One of our aims, in this paper, is to prove a generalization of Chow–Rashevsky’s
theorem for control systems in regular connected manifolds M modeled on convenient
(infinite-dimensional) locally convex spaces E. We call here a smooth manifold regular if
any neighborhood of any point a ∈M contains the closure of some smaller neighborhood
of the same point a in M . The regularity condition is in fact satisfied if, for example, M
is locally compact or is a topological group [5]. This result can be formulated as follows.
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Theorem 2.3. Let M be a regular connected manifold modeled on a convenient locally
convex space E, and F be a family of smooth vector fields on M . If LiexF is dense in
TxM for all x in M , then P (x) is dense in M for all x ∈M .

The proof of Theorem 2.3 is based on a corollary of Lemma 2.2, to be given as follows,
whose formulation requires the next definition.

Definition 2.4. Let B be an arbitrary subset of the manifold M . For any x ∈ B and
ν ∈ TxM , we say that ν is tangent to B at x if there exists a curve γν : [0, 1] →M such
that γν (0) = x, γ̇ν (0) exists and is equal to ν, and γν (t) ∈ B for all t. We denote by TxB
the set of all tangent vectors to B at x.

Then, as a result of Lemma 2.2, we have

Corollary 2.5. Let M be a regular connected manifold modelled on a convenient
locally convex space E, and B ⊆M be a closed nonempty subset. If TxB is dense in TxM
for every x ∈ B then B =M .

Accordingly, a sketch of the proof of Theorem 2.3 can be given as follows. We first
prove the following two claims that, on one hand, for any family F ⊂ Vec (M), we have

LiexF ⊆ TxP (x) , for every x ∈M,

and, on the other hand, we get

P (x) ⊂ P (p), for any p ∈M, x ∈ P (p).

Then, by the above-mentioned two relations, we derive LiexF ⊆ TxP (x) ⊂ TxP (p) ⊂ TxM

for any p ∈M and x ∈ P (p), and consequently

TxM = LiexF = TxP (p).

Therefore, the theorem follows from Corollary 2.5 with B = P (p).
We conclude our paper by showing as to how Theorem 2.3 works on the group of

orientation-preserving diffeomorphisms of the unit circle, which has applications in, e.g.,
conformal field theory as well as string theory and statistical mechanics.

2.2. Controllability on Diff0

(
S1

)
. Let S1 be the unit circle embedded into the

Euclidean space R
2, and denote by M = Diff0

(
S1

)
the identity connected component of

the group of diffeomorphisms of S1. In fact M is a Lie group modeled on the locally
convex space Vec

(
S1

)
, cf. [5, pp. 1039–1041]. Hence the tangent space of M at id ∈ M

can be identified with

TidM = Vec
(
S1

)
=

{
ν (θ) ∂θ | θ ∈ S1 = R/2πZ, ν ∈ C∞

(
S1,R

)}
,

where ∂θ stands for ∂
∂θ
. Under this identification, the commutator of two elements in the

Lie algebra Vec
(
S1

)
of smooth vector fields on the circle is given by

[ν (θ) ∂θ, ω (θ) ∂θ] =
(
ν ′ (θ)ω (θ)− ω′ (θ) ν (θ)

)
∂θ,

where ν ′ denotes the θ-derivative of ν. Note that this Lie bracket is the negative of the
commonly assumed commutator of vector fields. It is worth pointing out that the space
of all functions ν ∈ C∞

(
S1,R

)
is in fact a Fréchet space with the countable base of

seminorms {p0, pn |n ∈ N} where p0 (ν) = maxθ∈S1 |ν (θ)|, and pn (ν) = maxθ∈S1

∣∣ dn

dθn
ν (θ)

∣∣
for any n ∈ N. Therefore Vec

(
S1

)
is a real Fréchet space, and henceM is a convenient Lie

group (see [5] for more details). Let Vec
(
S1

)
C
= Vec

(
S1

)
⊗C be the complexification of
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the Lie algebra Vec
(
S1

)
. An element ν (θ) ∂θ ∈ Vec

(
S1

)
C
can in fact be expressed using

the Fourier expansion of ν (θ) =
∑+∞

n=−∞
ane

inθ, where an ∈ C and einθ = cosnθ+ i sinnθ.

Hence Bid := {∂θ, cosnθ ∂θ, sinnθ ∂θ}
∞

n=1 forms a basis for TidM = Vec
(
S1

)
. Let B̃id =

{cos θ ∂θ, sin θ ∂θ, cos 2θ ∂θ, sin 2θ ∂θ} ⊂ Bid. It is easily seen that

[sin θ ∂θ, cos θ ∂θ] = ∂θ,

[
ieinθ∂θ, ie

imθ∂θ

]
= (m− n) iei(m+n)θ∂θ.

Comparing the real and imaginary parts of both sides of the latter equality, we deduce

that taking linear combinations of all possible (iterated) Lie brackets of elements in B̃id
one can generate all vector fields in Bid; e.g.,

sin 3θ ∂θ = [cos θ ∂θ, cos 2θ ∂θ]− [sin θ ∂θ, sin 2θ ∂θ] ,

cos 3θ ∂θ = − ([sin θ ∂θ, cos 2θ ∂θ] + [cos θ ∂θ, sin 2θ ∂θ]) ,

sin 4θ ∂θ = ([cos θ ∂θ, cos 3θ ∂θ]− [sin θ ∂θ, sin 3θ ∂θ]) /2, etc.

Let us now consider B̃φ := didRφ

(
B̃id

)
⊂ TφM , where φ ∈ M = Diff0

(
S1

)
, and

Rφ : M 3 ψ 7−→ ψ ◦ φ ∈ M is the right translation map. Accordingly, we can de-

fine the distribution H =
⊔

φ∈M Hφ ⊂ TM where Hφ := span B̃φ ⊂ TφM . Setting

F := {X ∈ C∞ (M,H) |X (φ) ∈ Hφ for any φ ∈M}, we conclude that

LieφF = TφM, for any φ ∈M,

due to the definition of Hφ and the construction of B̃φ. Theorem 2.3 now shows that

P (F) (φ) =M for any φ ∈M .

It is worth noting that our controllability result on the group of diffeomorphisms
Diff0

(
S1

)
, given in this section, does not follow from those obtained by Agrachev and

Caponigro [1].

3. Conclusion

We have proved a generalization of Chow–Rashevsky’s theorem for control systems in
regular connected manifolds modeled on convenient not-necessarily-normable spaces; as
an application of this theorem, we have concluded our paper with a novel controllability
result on the group of orientation-preserving diffeomorphisms of the unit circle.
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