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1. Introduction
MV -algebras, which were introduced by Chang in [?] in 1958, prove the completeness

theorem for ℵ0-valued Lukasiewicz logic. Our aim in this article is to introduce and study
MV-pseudo metrics on MV-algebras. To this end, we 昀椀rst de昀椀ne MV-pseudo norms on
MV-algebras, and study their algebraic properties.

The article is organized as follows: in Section 2 we present some de昀椀nitions and results
of the MV-algebra theory and uniform spaces which will be used later in the paper.

In Section 3 we de昀椀ne the concept of MV-pseudo norm, and discuss its algebraic
properties and its relation to 昀椀lters and ideals. Also, the relationship between MV-pseudo
norm on MV-algebras and qoutient MV-algebras will be examined in this section. Finally,
we show that if f : A1 → A2 is an isomorphism between MV-algebras, and NA1

is an
MV-pseudo norm on A1, then NA2

= NA1
◦ f−1 is an MV-pseudo norm on A2.

In Section 4, we de昀椀ne MV-pseudo metrics and examine their relations to MV-pseudo
norms. There are also a few theorems about the relationship between MV-pseudo metrics
and uniform MV-algebras. Theorem ?? in particular provides an e昀케cient way to construct
an MV-pseudo metric on MV-algebras.

1.1. MV-algebras. An MV-algebra is an algebra (A,⊕, ∗, 0) of type (2, 1, 0) such
that for every x, y ∈ A,
(M1) (A,⊕, 0) is a commutative monoid,
(M2) x⊕ 0∗ = 0∗,
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(M3) (x∗)∗ = x, and
(M4) (x∗ ⊕ y)∗ ⊕ y = (x⊕ y∗)∗ ⊕ x. [?]

In an MV-algebra A, for every x, y ∈ A, de昀椀ne
(M5) 1 := 0∗;
(M6) x⊙ y := (x∗ ⊕ y∗)∗;
(M7) x⊖ y := x⊙ y∗;
(M8) x → y := (x⊙ y∗)∗;
(M9) x⇝ y := (x⊕ y∗)∗.

In an MV-algebra A, for every x, y ∈ A, we write x ≤ y if and only if x∗ ⊕ y = 1. It
is well-know that ≤ is a partial order on A, which gives A the structure of a distributive
lattice, where the join and meet are de昀椀ned by x∧y = y⊙ (y∗⊕x) and x∨y = x⊕ (y⊖x),
respectively, 0 is the least element and 1 is the greatest element. By (M6) and (M7), for
every x, y ∈ A, x ≤ y ⇐⇒ x⊖ y = 0.

Definition 1.1. Let A be an MV-algebra.
(1) A non-empty subset I of A is called an ideal if it satis昀椀es the following conditions.
(I1) For every x, y ∈ I, x⊕ y ∈ I.
(I2) If x ∈ I and y ≤ x, then y ∈ I. [?]
(2) A non-empty subset F of A is called a 昀椀lter if it satis昀椀es the following conditions.
(F1) For every x, y ∈ F, x⊙ y ∈ F .
(F2) If x ∈ F and x ≤ y, then y ∈ F . [?]

Proposition 1.2. [?] Let F be a 昀椀lter and I be an ideal of an MV-algebra A. Then
the following are congruence relations on A.

x
F
≡ y ⇐⇒ x → y ∈ F and y → x ∈ F.

x
I
≡ y ⇐⇒ x⊖ y ∈ I and y ⊖ x ∈ I.

Moreover, if x/F = {y ∈ A : x
F
≡ y}, A/F = {x/F : x ∈ A}, x/I = {y ∈ A : x

I
≡ y}

and A/I = {x/I : x ∈ A}, then both A/F and A/I are quotient MV-algebras with the
operations
x/F ⊙ y/F = (x⊙ y)/F, x/I ⊕ y/I = (x⊕ y)/I, (x/F )∗ = x∗/F and (x/I)∗ = x∗/I.

2. MV-pseudo norms on MV-algebras
Definition 2.1. Let A be an MV-algebra. Then, we say that a map N : A −→ R is

an MV-pseudo norm on A if the following hold.
(N1) N(x⊕ y) ≤ N(x) +N(y).
(N2) N(x∗) ≤ N(1)−N(x).
An MV-pseudo norm is an MV-norm if N(x) = 0 ⇔ x = 0.

Example 2.2. Let X be a 昀椀nite set and (P (X),∪, ∗,∅, X) be the MV-algebra in
which for each B ∈ P (X), B∗ is the complement of B in X. The map N : P (X) −→ R

by N(B) = cardB is a MV-pseudo norm.

Theorem 2.3. Let N1 and N2 be MV-pseudo norms on A and α ≥ 0, then
(i) the function N : A −→ R, de昀椀ned by N(x) = αN1(x)+N2(x), is an MV-pseudo norm.
Moreover, N is an MV-norm, if N1 and N2 are MV-norms.
(ii) the map N(x) = inf{N1(z) : z ∈ x

I
} is an MV-pseudo norm, where I is an ideal in A.
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Theorem 2.4. Let I be an ideal in an MV-algebra A, and N be an MV-pseudo norm
on it. Then,
(i) the map n : A

I
−→ R de昀椀ned by n(x

I
) = inf{N(z) : z ∈ x

I
} is an MV-pseudo norm on

A
I

morovere if for every x ∈ A, min x
I

exists and N is an MV-norm on A, then n(x
I
) is

also an MV-norm on A
I

.

If F is 昀椀lter, similar to the Theorem ??, n( x
F
) is also an MV-pseudo norm on A

F
.

Theorem 2.5. Let I be an ideal in an MV-algebra A. Then,
(i) the set IN = {x ∈ A : N(x) = 0} is an ideal in A if N is an MV-pseudo norm on A;
moreover if n is an MV-pseudo norm on A

I
, then N(x) = n(x

I
) is an MV-pseudo norm on

A. Moreover, n is an MV-norm on A
I

if and only if I = IN .

Theorem 2.6. Let f be an isomorphism from an MV-algebra (A1,⊕, 0) to an MV-
algebra (A2,⊕, 0). If NA1

is an MV-pseudo norm on A1, then NA2
: A2 −→ R, de昀椀ned by

NA2
(y) = NA1

◦f−1(y) for every y ∈ A2, is an MV-pseudo norm on A2, and NA2
(f(x)) =

NA1
(x).

Theorem 2.7. Let A1 and A2 be MV-algebras, and NA1
be an MV-pseudo norm on A1.

If f : A1 −→ A2 is an epimorphism, then NA2
: A2 −→ R de昀椀ned by y 7−→ inf{NA1

(z) :
f(z) = y} is an MV-pseudo norm on A2, and NA2

(f(x)) ≤ NA1
(x).

3. MV-pseudo metrics on MV-algebras
Definition 3.1. A pseudo metric d on an MV-algebra A is called an MV-pseudo

metric if for every x, y, a, b ∈ A,
(D5) d(x⊕ y, a⊕ b) ≤ d(x, a) + d(y, b), and
(D6) d(x∗, y∗) ≤ d(x, y).
An MV-metric on A is an MV-pseudo metric that satis昀椀es d(x, y) = 0 ⇐⇒ x = y.

Theorem 3.2. If N is an MV-pseudo norm on an MV-algebra A, then dN (x, y) =
N(x⊖ y) +N(y ⊖ x) is an MV-pseudo metric on A.

Corollary 3.3. MV-pseudo metric dN of Theorem ??, satis昀椀es the following prop-
erties.
(i) For every x, dN (0, x)+ dN (1, x) = N(1), (ii) The mapping dN is an MV-metric if and
only if N is an MV-norm, (iii) For every x, dN (x, x∗) ≤ N(1).

Remark. From now on, if N is an MV-pseudo norm on an MV-algebra, then dN is
the MV-pseudo metric induced by N in Theorem ??.
Let A be an MV-algebra and U be a uniformity on A. By De昀椀nition uniformly continuous,
(i) the operation ⊕ : (A×A,U ×U) → (A,U) is uniformly continuous if for every W ∈ U ,
there exist U, V ∈ U such that U ⊕ V ⊆ W or equivalently, for every (x, x′)∈ U and
(y, y′)∈ V , (x⊕ y, x′ ⊕ y′)∈ W ;
(ii) the map ∗ : (A,U) → (A,U) is uniformly continuous if for every W ∈ U , there exists
V ∈ U such that if (x, y) ∈ V , then (∗(x), ∗(y)) ∈ W .
The pair (A,U) is called a uniform MV-algebra if ⊕ and ∗ are uniformly continuous.

Let d be an MV-pseudo metric on an MV-algebra A. Then, it is easy to prove that the
set B = {Uϵ : ε > 0} is a base for a uniformity Ud on A, where Uϵ = {(x, y) : d(x, y) < ϵ}.
Thus, by De昀椀nition uniformly continuos and (D5) and (D6), the operations ⊕ and ∗ are
uniformly continuous.
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A subset S of an MV-algebra A is said to be convex if for any x, y, z ∈ A, x ≤ z ≤ y, and
x, y ∈ S imply that z ∈ S.

Proposition 3.4. Let A be an MV-algebra, S ⊆ A and Ŝ = {x ∈ A : ∃ y ∈
S such that x ≤ y}. Then,
(i) if 0 ∈ S, then S is convex if and only if for any x, y ∈ A, if x ≤ y and y ∈ S, then
x ∈ S;

(ii) 0 ∈ Ŝ and Ŝ is the smallest convex set of A containing S;

(iii) if S ⊆ T , then Ŝ ⊆ T̂ ;

(iv) Ŝ ⊕ T̂ ⊆ Ŝ ⊕ T .
Remark. Let d be a pseudo metric on MV-algebra A. We denote the set {x : d(x, 0) <

r} by B(r) i.e B(r) = {x : d(x, 0) < r}. Also, we recall that the 昀椀rst part of the proof of
the following theorem is from [?].

Theorem 3.5. Let {Un}n⩾0 be a family of subsets of an MV-algebra A such that
0 ∈ Un and Un+1⊕Un+1 ⊆ Un for any n ≥ 0. Then there is an MV-pseudo metric d on A
such that the operations ⊕ and ∗ are uniformly continuous on (A,Ud) and for any n ≥ 0,

{x : d(x, 0) < 1/2n} ⊆ Ûn ⊆ {x : d(x, 0) < 2/2n}.

Moreover, d is an MV-metric if and only if
∩

n≥0
Ûn = 0.

Proof. Let V (1) = U0, n ≥ 0 and assume that V (m
2n
) are de昀椀ned for each m =

1, 2, 3, ..., 2n such that 0 ∈ V (m
2n
). Put then V ( 1

2n+1 ) = Un+1, V ( 2m
2n+1 ) = V (m

2n
) for m =

1, 2, 3, ..., 2n and for each m = 1, 2, 3, ..., 2n − 1, V (2m+1

2n+1 ) = V (m
2n
) ⊕ Un+1 = V (m

2n
) ⊕

V ( 1

2n+1 ). We also de昀椀ne V (m
2n
) = A, when m > 2n. By induction on n we prove that for

any m > 0 and n ≥ 0,
(∗) V (

m

2n
)⊕ V (

1

2n
) ⊆ V (

m+ 1

2n
).

First notice that if m+ 1 > 2n, then (∗) is obviously true. Let m < 2n. If n = 1, then m
is also 1, so V (1

2
)⊕ V (1

2
) = U1 ⊕ U1 ⊆ U0 = V (1). Asume that (∗) holds for some n. We

verify it for n + 1. If m = 2k, then by the de昀椀nition of V (2m+1

2n+1 ), V ( m
2n+1 ) ⊕ V ( 1

2n+1 ) =

V ( 2k
2n+1 )⊕ V ( 1

2n+1 ) = V ( k
2n
)⊕ V ( 1

2n+1 ) = V (2k+1

2n
). Suppose now that m = 2k + 1 < 2n+1

for some n ≥ 0. Then
V ( m

2n+1 )⊕ V ( 1

2n+1 ) = V (2k+1

2n+1 )⊕ Un+1 = V ( k
2n
)⊕ Un+1 ⊕ Un+1 ⊆ V ( k

2n
)⊕ Un = V ( k

2n
)⊕

V ( 1

2n
). But by the inductive assumption, V ( m

2n+1 ) ⊕ V ( 1

2n+1 ) ⊆ V (k+1

2n
) = V (m+1

2n+1 ). By
Proposition ??, for any r ≥ 0, V̂ (r) is a convex set containing 0, it is easy to derive that
the map f : A −→ R de昀椀ned by f(x) = inf{r : x ∈ V̂ (r)} is increasing bounded function.
De昀椀ne the map N : A −→ R by N(x) = sup{f(x⊕ z)− f(z) : z ∈ A}. The function N is
obviously well de昀椀ned and increasing. In a similar method with the proof of Theorem ??,
we can show that dN (x, y) = N(x⊖ y) +N(y⊖ x) is an MV-pseudo metric. By (D5) and
(D6), we can prove that the operations ⊕ and ∗ are uniformly continuous on (A,UdN ).
Let us prove that dN satis昀椀es

{x : dN (x, 0) <
1

2n
} ⊆ Ûn ⊆ {x : dN (x, 0) ≤

2

2n
}.

Notice that f(0) = 0, hence if dN (x, 0) < 1

2n
, then f(x) = f(x ⊕ 0) − f(0) ≤ N(x) =

dN (x, 0) < 1

2n
. Hence for some 0 ≤ r < 1

2n
, x ∈ V̂ (r). Since V (r) ⊆ V ( 1

2n
) = Un,

x ∈ V̂ (r) ⊆ V̂ ( 1

2n
) = Ûn. Now let x ∈ Ûn. Then there is a x′ ∈ Un such that x ≤ x′.
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Clearly for any z ∈ A, there exists a k ≥ 0 such that k−1

2n
≤ f(z) ≤ k

2n
. Since z ∈ ̂V ( k

2n
),

there is a z′ ∈ V ( k
2n
) such that z ≤ z′. From condition (∗) it follows that z′ ⊕ x′ ∈

V ( k
2n
) ⊕ V ( 1

2n
) ⊆ V (k+1

2n
) and from z ⊕ x ≤ z′ ⊕ x′ deduces that z ⊕ x ∈ ̂V (k+1

2n
). Hence

f(x⊕ z)− f(z) ≤ k+1

2n
− k−1

2n
= 2

2n
.

In the end of proof, let us prove that dN is an MV-metric if and only if
∩

n≥0
Ûn = 0.

Let
∩

n≥0
Ûn = 0 and dN (x, y) = 0. Then N(x⊖ y) = N(y⊖ x) = 0. Hence for any n ≥ 0,

x⊖ y and y⊖ x are in Ûn. This concludes that x⊖ y = y⊖ x = 0 and so x = y. Therefore
dN is metric.
Conversely let dN be metric and x ∈

∩
n≥0

Ûn. Since Ûn ⊆ {x : dN (x, 0) ≤ 2

2n
} for every

n ≥ 0, we derive that dN (x, 0) = 0. This implies that x = 0. □

Theorem 3.6. Let A be a MV-algebra. Then, there is an MV-pseudo metric d on A
such that (A,Ud) is a uniform MV-algebra if and only if there is a topology τ on A such
that (A, τ) is a topological MV-algebra and τ hsa a countable local base at 0. Moreover, d
is continuous in (A, τ).

Proposition 3.7. Let S = {Ni : i ∈ I} be a chain of MV-pseudo norms on an
MV-algebra A. Then, there exists a uniformity U on A such that (A,U) is a uniform
MV-algebra.

Proposition 3.8. Suppose A is an MV-algebra, I is an ideal and q : A −→ A
I

, given
by q(x) = x

I
, is the quotient map. Then there are uniformities ηI and εI on A and A

I
such

that (A, ηI) and (A
I
, εI) are uniform MV-algebras and q : (A, ηI) → (A

I
, εI) is uniformly

continuous.

Proposition 3.9. Let N be an MV-pseudo norm and I be an ideal in an MV-algebra
A. Then there exists an MV-pseudo metric Dn on A

I
such that (A

I
,UDn

) is a uniform MV-
algebra and the quotient map q : (A,UdN ) −→ (A

I
,UDn

), given by q(x) = x
I
, is uniformly

continuous.

4. Conclusion
In this article is to introduce MV-pseudo norms, MV-pseudo metric and MV-metric

and its relation to uniform continuity are discussed.
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