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Abstract. In this paper, we introduce the notion of sympathetic hom-Lie superalge-
bras. We prove some results on sympathetic multiplicative hom-Lie superalgebras with
surjective α. In particular, we 昀椀nd some equivalence condition in which a sympathetic
graded hom-ideal is direct factor of multiplicative hom-Lie superalgebra.
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1. Introduction
The notion of a hom-Lie algebra was introduced by Hartwig et al. [7] as part of study

of deformations of the Witt and the Virasoro algebras, which are widely utilized in the
theoretical physics; such as string theory, vertex models in conformal 昀椀eld theory, quan-
tum mechanics and quantum 昀椀eld theory. In a hom-Lie algebra, the jacobi identity is
twisted by a linear map, called the hom-Jacobi identity. Many results of hom-Lie algebras
were generalized to hom-Lie superalgebras by authors [1,2,4,5]. The authors introduced
the complete Lie superalgebra and recently the notion of compact hom-Lie superalgebra
was introduced in [2,4] that the sympathetic hom-Lie superalgebra is a special case of it.
Throughout this paper we 昀椀x a ground 昀椀eld K, which is algebraically closed of character-
istic zero. All Z2-graded vector spaces are considered over K and linear maps are K-linear
maps. Each element in the hom-Lie superalgebra is supposed to be homogeneous and
degree of x is denoted by |x|.

2. Main Results
The main topics covered in this article are hom-Lie superalgebras. So, at the 昀椀rst,

hom-Lie superalgebras and some of their related de昀椀nitions are presented.
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The concept of a hom-Lie superalgebra was introduced by Ammar and Makhlouf in [1].
At 昀椀rst let us recall some basic concepts from [1,8].

Definition 2.1. [8] A Lie superalgebra is a Z2-graded vector space g = g0 ⊕ g1,
together with a graded Lie bracket [., .] : g × g → g of degree zero, i.e. [., .] is a bilinear
map with [gi, gj ] ⊂ gi+j , such that for homogeneous elements x, y, z ∈ g, the following
identities hold:

• [x, y] = −(−1)|x||y|[y, x],
• [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]].

Definition 2.2. [1] A hom-Lie superalgebra is a triple (g, [., .], α) consisting of a
Z2-graded vector space g = g0 ⊕ g1, an even linear map (bracket) [., .] : g× g → g and an
even homomorphism α : g → g satisfying the following supersymmetry and hom-Jacobi
identity, i.e.

• [x, y] = −(−1)|x||y|[y, x],
• (−1)|x||z|[α(x), [y, z]] + (−1)|y||x|[α(y), [z, x]] + (−1)|z||y|[α(z), [x, y]] = 0,

where x, y and z are homogeneous elements in g. If |x| appears in some expression in
this paper, we always regard x as a Z2-homogeneous element and |x| as its Z2-degree.

• A hom-Lie superalgebra is called multiplicative hom-Lie superalgebra if α is an
algebraic morphism, i.e. for any x, y ∈ g we have

α([x, y]) = [α(x), α(y)].
• A hom-Lie superalgebra is called regular hom-Lie superalgebra, if α is an algebraic

automorphism.
• An even homomorphism f : g → g

′ where (g, [., .], α) and (g′, [., .]′, β) are two
hom-Lie superalgebras is said to be a homomorphism of hom-Lie superalgebras,
if

f [u, v] = [f(u), f(v))]′,
f ◦ α = β ◦ f .

Remark 2.3. When α = id, we get the classical Lie superalgebra.

Example 2.4. [1] (A昀케ne hom-Lie superalgebra). Let V = V0⊕V1 be a 3-dimensional
superspace where V0 is generated by e1, e2 and V1 is generated by e3. The triple (V, [, ], α)
is a hom-Lie superalgebra de昀椀ned by [e1, e2] = e1 , [e1, e3] = [e2, e3] = [e3, e3] = 0 and α is
any homomorphism.

A graded sub-vector space A ⊆ g is a hom-subalgebra of (g, [., .], α), if α(A) ⊆ A and A
is closed under the bracket operation [., .], i.e. [A,A] ⊆ A. Also, a graded hom-subalgebra
A is called a hom-ideal of g, denoted by A ◁ g, if [A, g] ⊆ A. Moreover, if [A,A] = 0, then
A is called Abelian.

Definition 2.5. [6] The center of a hom-Lie superalgebra g, denoted by C(g), is the
set of elements x ∈ g satisfying [x, g] = 0.

Now, we recall the notion of an αt-derivation.

Definition 2.6. Let (g, [., .], α) be a multiplicative hom-Lie superalgebra. For any
nonnegative integer t, a linear map D : g → g of degree d is called an αt-derivation of the
multiplicative hom-Lie superalgebra (g, [., .], α), if
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• [D,α] = 0, i.e. D ◦ α = α ◦D,
• D([a, b]) = [D(a), αt(b)] + (−1)d|a|[αt(a), D(b)] for all a, b ∈ g.

For any a ∈ g satisfying α(a) = a, de昀椀ne adt(a) : g → g by
adt(a)(b) = [a, αt(b)],

for all b ∈ g.
Definition 2.7. A hom-Lie superalgebra g is called sympathetic hom-Lie superalgebra

if g satis昀椀es the following two conditions.
• C(g) = 0
• [g, g] = g

• Derαt+1(g) = adt(g),

for any nonnegative integer t.
Definition 2.8. Let g be a hom-Lie superalgebra, A be a graded hom-ideal of g.

Then A is said to be a direct factor if there exists a graded hom-ideal B of g such that
g = A⊕B.

Definition 2.9. Let g be a hom-Lie superalgebra, A be a graded subspace of g. Then
A is called characteristic hom-ideal if for every D ∈ Derαt+1(g), D(A) ⊆ A.

Lemma 2.10. Let (g, [., .], α) be a multiplicative hom-Lie superalgebra with surjective
α and A be a graded hom-ideal of g. If A is perfect, then A is a characteristic hom-ideal
of g.

Proof. Let D ∈ Derαt+1(g) and x, y ∈ A. Then by defenition of αt-derivation we
have

D([x, y]) = [D(x), αt(y)] + (1)|D||x|[αs(x), D(y)] ∈ A.

Since A is perfect, then we have D(A) ⊆ A. Thus A is a characteristic hom-ideal. □

By above notation, we have the following proposition.
Proposition 2.11. Let (g, [., .], α) be a perfect multiplicative hom-Lie superalgebra

with surjective α , A be a graded hom-ideal of g. If A is a direct factor of g, then A is
perfect.

Proof. Since A is a direct factor of g, then there exists a graded hom-ideal B of g

such that g = A ⊕ B, in particular, [A,B] = {0}. It follows that [g, g] = [A,A] ⊕ [B,B].
So both A and B are perfect. □

Proposition 2.12. Let (g, [., .], α) be a multiplicative hom-Lie superalgebra with sur-
jective α and trivial center. Let A be a direct factor of g. Then C(A) = {0}.

Now we consider the sympathetic hom-Lie superalgebra to state some results.
Proposition 2.13. Let (g, [., .], α) be a multiplicative hom-Lie superalgebra with sur-

jective α and A be a sympathetic graded hom-ideal of g. Then there exists a graded
hom-ideal B such that g = A⊕B.

Proof. Let B = Cg(A). Since α is surjective then Cg(A) is a graded hom-ideal of g.
We know that A ◁ g, then For any x ∈ g, adt(x) ∈ Derαt+1(A). By using Derαt+1(A) =
adt(A), there exists a derivation D in Derαt+1(A) such that adt(x) = D. So there exists
y ∈ A such that

D(z) = [x, α(z)] = [y, α(z)],

3



A. R. Attari Polsangi and M. R. Farhangdoost

for all z ∈ A. Then [x − y, α(z)] = 0 and then x − y ∈ Cg(A) = B. Hence x = b + y

for some b ∈ B. A ∩ B = A ∩ Cg(A) = CA(A) = {0}, since A is sympathetic. Therefore
g = A⊕B. □

Proposition 2.14. Let (g, [., .], α) be a sympathetic multiplicative hom-Lie superalgebra
with surjective α and A be a graded hom-ideal of g. Then A is a direct factor of g if and
only if A is sympathetic.

By using above Proposition, we have the following consequences immediately.

Corollary 2.15. Let (g, [., .], α) be a multiplicative hom-Lie superalgebra with sur-
jective α and A be a sympathetic graded hom-ideal of g. Then A is a direct factor of
g.

Corollary 2.16. Let (g, [., .], α) be a multiplicative hom-Lie superalgebra with sur-
jective α and A be a sympathetic graded hom-ideal of g. If Derαt+1(g) = adt(g), then
Derαt+1(A) = adt(A).
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