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1. Introduction
In [1] it is proved that a (simply-connected) four-dimensional homogeneous Riemann-

ian manifold is either symmetric or isometric to a Lie group equipped with a left-invariant
Riemannian metric. Indeed, the class of n-dimensional simply connected Lorentzian Lie
groups (respectively ,Lorentzian Lie algebras) coincides with the class of the Riemannian
ones. Using this fact, four-dimensional Einstein Lorentzian Lie groups have been classi-
fied [3]. On the other hand, investigating critical points of the energy associated to vector
fields is an interesting problem from different points of view. In Riemannian settings, it
has been proved that critical points of the energy functional E : X(M) → R, restricted to
maps defined by vector fields, are parallel vector fields [7–10]. Moreover, Gil-Medrano [7]
studied when V is a harmonic map. So, it is natural to determine the harmonicity prop-
erties of vector fields on four-dimensional Lorentzian Einstein Lie groups.
A Riemannian manifold admitting a parallel vector field is locally reducible, and the same
is true for a pseudo-Riemannian manifold admitting an either space-like or time-like par-
allel vector field. This leads us to consider different situations, where some interesting
types of non-parallel vector fields can be characterized in terms of harmonicity proper-
ties [2,6,8,9].
If V : (M, g) −→ (TM, gs) is a critical point for the energy functional, then V is said to de-
fine a harmonic map. The Euler-Lagrange equations characterize vector fields V defining
harmonic maps as the ones whose tension field θ(V ) = tr(∇2V ) vanishes. Consequently,
V defines a harmonic map from (M, g) to (TM, gs) if and only if
(1) tr[R(∇.V, V ).] = 0, ∇∗∇V = 0,
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where with respect to a pseudo-orthonormal local frame {e1, ..., en} on (M, g), with εi =
g(ei, ei) = ±1 for all indices i, one has

∇∗∇V =
∑

i εi(∇ei∇eiV −∇∇eiei
V ).

A smooth vector field V is said to be a harmonic section if it is a critical point of Ev(V ) =
(1/2)

∫
M ||∇V ||2dv, where Ev is the vertical energy. The corresponding Euler-Lagrange

equations are given by
(2) ∇∗∇V = 0.

Let Xρ(M) = {V ∈ X(M) : ||V ||2 = ρ2} and ρ ̸= 0. Then, one can consider vector
fields V ∈ Xρ(M) which are critical points for the energy functional E|Xρ(M), restricted to
vector fields of the same constant length. The Euler-Lagrange equations of this variational
condition are given by
(3) ∇∗∇V is collinear to V.

In the non-compact case, the condition (3) is taken as a definition of critical points for
the energy functional under the assumption ρ ̸= 0, that is, if V is not light-like. If ρ = 0,
then (3) is still a sufficient condition so that V is a critical point for the energy functional
E|X0(M), restricted to light-like vector fields ( [2], Theorem 26).
Following [3], four-dimensional Einstein Lorentzian Lie groups are classified into four
types, denoted by (a1), (a2), (c1) and (c2). In the present paper using a case-by-case
argument we shall completely investigat the harmonicity of vector fields on these spaces.

2. Harmonicity of vector fields
Let (G, g) be a four-dimensional Lorentzian Lie group. Following [3], the Lie algebra

g of G is a semi-direct product ng3, where = span{e4} acts on g3 = span{e1, e2, e3}, and
the Lorentzian inner product on g is described by

(a)


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , (c)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

In 2013 Calvaruso and Zaeim [3] obtained the following result:
Theorem 2.1. Let G be a four-dimensional simply connected Lie group. If g is a

left-invariant Lorentzian Einstein metric on G, then the Lie algebra g of G is isometric
to g = ng3, where g3 = span{e1, e2, e3} and = span{e4}, and one of the following cases
occurs.
(a) {ei}4i=1 is a pseudo-orthonormal basis, with e3 time-like. In this case, G is isometric

to one of the following semi-direct products RnG3:
(a1) RnH, where H is the Heisenberg group and g is described by one of the following

sets of conditions:
(1) [e1, e2] = ϵAe1, [e1, e3] = Ae1, [e1, e4] = δAe1, [e3, e4] = −2Aδ(ϵe2 − e3),

(2) [e1, e2] =
ϵ
√
A2−B2

2 e1, [e1, e3] = − ϵδ
√
A2−B2

2 e1, [e1, e4] =
δA+B

2 e1, [e2, e4] = B(e2 +
δe3), [e3, e4] = A(e2 + δe3),

(3) [e1, e2] = ϵA
√
A2−B2

B e1, [e1, e3] = ϵ
√
A2 −B2e1, [e2, e4] = Be2 − Ae3, [e3, e4] =

Ae2 − A2

B e3,

(4) [e1, e2] = ϵ
√
A2 −B2e1 +Be2, [e3, e4] = Ae3,

In all the cases listed above, ϵ = ±1, δ = ±1 and A,B,C,D are real constants.
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All four-dimensional simply connected Einstein Lorentzian Lie groups of type (a1) are
symmetric [3] and the study of harmonic invariant vector fields on these spaces would be
natural and interesting. The main purpose of this section is to investigat the harmonicity
properties of left-invariant vector fields on four-dimensional Lorentzian Lie group of type
(a1). The following notation is necessary.

Remark 2.2. Let X̃ρ(M) denote the set of all vector fields V ∈ Xρ(M), which are
critical points for the energy functional E|Xρ(M), restricted to vector fields of the same
constant length. Remember that ρ is not necessarily the same for different cases.

Let (G, g) be a four-dimensional Lorentzian Lie group of type (a1) and {ei}4i=1 a
pseudo-orthonormal basis, with e3 time-like. Under these assumptions, we prove the
following result.

Theorem 2.3. Let g be the Lie algebra of G and V = ae1 + be2 + ce3 + de4 ∈ g a
left-invariant vector field on G for some real constants a, b, c, d. For the different cases
(1)− (4) of type (a1), we have:

(1) : V ∈ X̃ρ(G) if and only if V = c(e2 − e3 − e4), that is, b = −c = −d. In this
case ϵ = 1, ∇∗∇V = 3A2V.

(2) : V ∈ X̃ρ(G) if and only if V = c(e2 + e3 − e4), that is, b = c = −d. In this case
ϵ = −1, δ = 1, ∇∗∇V = −3

4(A+B)2V .
(3) : V ∈ X̃ρ(G), in this case, ∇∗∇V = − (A2−B2)2

B2 V .
(4) : V ∈ X̃ρ(G) if and only if a = b = 0, in this case ∇∗∇V = −A2V or c = d = 0,

in this case ∇∗∇V = (B2 −A2)V .
Proof. The above statement is obtained from a case-by-case argument. As an exam-

ple, we report the details for case (3) here. Let V ∈ g be a critical point for the energy
functional. The components of the Levi-Civita connection are the following:

∇e1e1 = − ϵA
√
A2−B2

B e2 + ϵ
√
A2 −B2e3, ∇e1e2 =

ϵA
√
A2−B2

B e1
∇e1e3 = ϵ

√
A2 −B2e1 ∇e2e2 = −Be4, ∇e2e3 = −Ae4,

∇e2e4 = Be2 −Ae3, ∇e3e2 = −Ae4,

∇e3e3 = −A2

B e4, ∇e3e4 = Ae2 − A2

B e3,

(4)

while ∇eiej = 0 in the remaining cases. From (4) we obtain
∇e1V = ϵ

√
A2 −B2( cB+bA

b e1 − aA
B e2 + ae3),

∇e2V = dBe2 − dAe3 − (cA+ bB)e4, ∇e4V = 0

∇e3V = dAe2 − dA2

B e3 − A(cA+bB)
B e4.

(5)

Clearly, there are no parallel vector fields V ̸= 0 in g. We can now calculate ∇ei∇eiV
and ∇∇eiei

V for all indices i and we find

∇e1∇e1V = −(A2−B2)
B2 (a(A2 −B2)e1 + (cB + bA)(Ae2 −Be3)),

∇e2∇e2V = −(cB + bA)(Be2 −Ae3) + d(A2 −B2)e4,

∇e3∇e3V = −A2

B2 ((cB + bA)(Be2 −Ae3) + d(A2 −B2)e4), ∇e4∇e4V = 0,
∇∇e1e1

V = ∇∇e3e3
V = ∇∇e2e2

V = ∇∇e4e4
V = 0.

(6)

Thus, we get

∇∗∇V =
∑

i εi(∇ei∇eiV −∇∇eiei
V ) = −(A2−B2)

B2 (a(A2 −B2)e1+

(cB + bA)(Ae2 −Be3))− (cB + bA)(Be2 −Ae3) + d(A2 −B2)e4−
(−A2

B2 ((cB + bA)(Be2 −Ae3) + d(A2 −B2)e4)) = − (A2−B2)2

B2 V.

3



Y. AryaNejad

Table 1. Equivalent properties for the cases (1)− (4) in Theorem 2.3.

(G, g) Equivalent properties (denoted by ≡)
(1) V is geodesic; ≡ V ∈ X̃ρ(G); ≡ none of these vector fields is harmonic (in

particular, defines a harmonic map); ≡ V = c(e2 − e3 − e4),
(2) V is geodesic; ≡ V is harmonic if and only if A = −B; ≡ V ∈ X̃ρ(G);

≡ V defines harmonic map if and only if A = −B; ≡ V is Killing if and
only if A = −B and d = 0; ≡ V = c(e2 + e3 − e4),

(3) V is geodesic if and only if A = ±B and b = ∓c; ≡ V is harmonic if and
only if A = ±B; ≡ V ∈ X̃ρ(G); ≡ V defines harmonic map if and only if
A = ±B; ≡ V is Killing if and only if A = ±B, b = ∓c and d = 0,

(4) V is geodesic if and only if a = b = c = 0; ≡ V ∈ X̃ρ(G) if and only if
a = b = 0; ≡ none of these vector fields is harmonic (in particular, defines
a harmonic map).

�

As the definitions already show, V is harmonic if ∇∗∇V = 0 and V defines a harmonic
map if and only if

tr[R(∇.V, V ).] = 0, ∇∗∇V = 0.

For case (3) in Theorem 2.3, ∇∗∇V = − (A2−B2)2

B2 V = 0 if and only if A = ±B, that is, V
is harmonic if and only if A = ±B. Let R denote the curvature tensor of (M, g), taken
with the sign convention R(X,Y ) = ∇[X,Y ]− [∇X,∇Y ]. Then, using (5), we find

R(∇e1V, V )e1 =
ϵ(A2−B2)3/2

B3 ((A2 −B2)a2 + (bA+ cB)2)(Ae2 −Be3),
A2

B2R(∇e2V, V )e2 = R(∇e3V, V )e3 =
A2(A2−B2)

B3 ((A2 −B2)d2 − (cA+ bB)2)e4,
R(∇e4V, V )e4 = 0

and so, when A = ±B clearly,
tr[R(∇.V, V ).] =

∑
i εiR(∇eiV, V )ei = 0.

Hence, tr[R(∇.V, V ).] = 0 if and only if A = ±B. Appling this argument for other cases
of type (a1) proves the following classification result.

Theorem 2.4. Let V be a critical point for the energy functional, described by the
conditions (2) and (3) in Theorem 2.3. Then, for cases (2) and (3), V defines a harmonic
map if and only if A = −B and A = ±B respectively.

A vector field V is geodesic if ∇V V = 0, and is Killing if LV g = 0, where L denotes
the Lie derivative. Parallel vector fields are both geodesic and Killing, and vector fields
with these special geometric features often have particular harmonicity properties. A
straightforward calculation proves the following main classification result.

Corollary 2.5. If g is a left-invariant Lorentzian Einstein metric on G, then for the
cases (1)− (4) in Theorem 2.3, the equivalent properties for V = ae1 + be2 + ce3 + de4 ∈ g
are listed in Table 1.

Remark 2.6. Recall that for a Lorentzian Lie group, a left-invariant vector field V is
spatially harmonic if and only if

(7) X̃V = −∇∗∇V −∇V ∇V V − divV · ∇V V + (∇V )t∇V V is collinear to V.
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Clearly, conditions (3) and (7) coincide for geodesic vector fields. Hence, the results listed
in Table 1 show that for cases (1) and (2), V is spatially harmonic and for case (3), V
is spatially harmonic if and only if A = ±B and b = ∓c. For case (4), V is spatially
harmonic if and only if a = b = c = 0.
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