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Abstract. Let X be an entropy minimal synchronized system and ϕ : X → Y a
factor code. We show that Y is synchronized whenever ϕ is entropy preserving. With
this property, entropy preserving is equivalent to having a degree. Moreover, entropy
minimality is equivalent to X being intrinsically ergodic of full support and in this
situation, the entropy of X is identical with the synchronized entropy of X.
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1. Introduction

Entropy minimality was introduced by Coven and Smtal [2] as a property of dynamical
systems which is stronger than topological transitivity and weaker than minimality. There
has been some recent work which describes some conditions which are equivalent to entropy
minimality for shifts of finite type. Our goal of this note is to look for entropy minimality
among the synchronized systems which are a well-known subclass of coded systems.

As any other topological dynamical system, the study of possible measures preserved
by the shift map is of interest in coded systems. In particular, the investigation for the
existence and uniqueness of a measure of maximal entropy has a long history and those
systems with this unique invariant measure are called intrinsically ergodic. This measure,
if exists, is the most natural measure on subshifts and is the main tool for studying their
statistical properties.

Parry [5] established intrinsically ergodic for topologically transitive shifts of finite type
and all their subshift factors (sofic shifts) and Bowen [1] proved for shifts with specification
property. We extend their results and will show that a synchronized system (X, σ) with
positive entropy is intrinsically ergodic of full support if and only if it is entropy minimal.

In Theorem 3.2, we will prove that entropy minimality is a property invariant by
entropy preserving factor codes. Also, we will show that if X is an entropy minimal
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synchronized system, then any factor of X by an entropy preserving factor code will be
synchronized (Theorem 3.3). Furthermore, for entropy minimal synchronized systems,
entropy preserving is equivalent to having a degree (Theorem 3.5).

Finally, for a synchronized system X with the underlying graph G for its Fischer
cover, we show that h(G) = hsyn(X) and if X is entropy minimal or equivalently if X is
intrinsically ergodic of full support, then h(X) = hsyn(X) [Theorem 3.8].

2. Background and Notations

The notations has been borrowed from [4] and a brief reminder of the main definitions
of symbolic dynamics has been brought here. Let A be a finite set of alphabet. A full

A-shift is defined as (AZ, σ) where the shift map σ is defined by σ((xi)i∈Z) = (xi+1)i∈Z.
Any closed invariant set X of AZ is called a subshift or a shift space. Let Bn(X) denote
the set of all admissible n words, i.e. words of length n and set B(X) := ∪n∈NBn(X) to
be the language of X.

Recall the definition of an (m + n + 1)-block map from [4, §1.5]; however, without
loss of generality we will use only one-block maps (m = n = 0) which induces a map ϕ
called code. Thus if ϕ is a code from X into another shift space, then ϕ(· · ·x−1x0x1 · · · ) =
(· · ·Φ(x−1)Φ(x0)Φ(x1) · · · ) where Φ is the (m+ n+ 1)-block map.

A factor code is an onto code. A code ϕ : X → Y is finite-to-one if there is an integer
M such that |ϕ−1(y)| ≤ M for every y ∈ Y . A point x in a shift space X is doubly
transitive if every word in X appears in x infinitely many often to the left and to the
right. We denote by D(X) the set of doubly transitive points of X.

A shift space X is irreducible if for every pair of words u, v ∈ B(X) there is a word
w ∈ B(X) so that uwv ∈ B(X). A word v ∈ B(X) is synchronizing if whenever uv, vw ∈
B(X), then uvw ∈ B(X).

Let G be a graph with edge set E . The edge shift XG is the shift space specified by
XG = {ξ = (ξi)i∈Z ∈ EZ : t(ξi) = i(ξi+1) for all i ∈ Z}. A labeled graph G is a pair (G,L)
where G is a graph with the labeling L : E → A. Let L∞(ξ) be the label of a bi-infinite
path ξ ∈ XG. Set XG := {L∞(ξ) : ξ ∈ XG} which will be denoted by L∞(XG) as well. If
there is a graph G such that X = XG , then we say G is a presentation (or cover) of XG .

A shift space is sofic if there is a finite graph G such that X = XG . Equivalently X
is sofic, if it is a factor of an SFT, or shift of finite type (shifts characterized by a set of
finite forbidden words). A labeled graph G = (G,L) is right-resolving if for any vertex I
of G and any symbol a ∈ A, there is at most one edge labeled by a and going out of I.
A minimal right-resolving cover (or Fischer cover) of a sofic shift X is a right-resolving
cover of X having the fewest vertices among all right-resolving covers of X.

The entropy of a subshift X is defined by h(X) = limn→∞(1/n) log |Bn(X)|. There
are some other entropies which will be used in this note. One is the entropy related to
graphs given by Gurevich and that is defined as follows. Let G be a connected oriented
graph. Then for any vertices I, J

(1) h(G) = lim
n→∞

1

n
logBIJ(n)

where BIJ(n) is the number of paths of length n which starts at I and ends at J .

3. Main results

Definition 3.1. A topological dynamical system (X,T ) is said to be entropy minimal
if all closed T-invariant subsets of X have entropy strictly less than (X,T ).
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First, we investigate some dynamical properties of a subshift satisfying entropy min-
imality. The next two theorems deals with the application of entropy preserving factor
codes in such systems. Also see Theorem 3.5.

Theorem 3.2. Suppose ϕ : X → Y is an entropy preserving factor code and assume

that X is entropy minimal. Then, Y is entropy minimal as well.

Proof. Let Z be a proper subshift of Y and assume that h(Z) = h(Y ). By surjectiv-
ity, ϕ−1(Z) is a proper subshift of X and since X is entropy minimal, h(ϕ−1(Z)) < h(X).
Now Z is a factor of ϕ−1(Z) and so h(Z) ≤ h(ϕ−1(Z)) < h(X) = h(Y ) violating our
assumption. □

Theorem 3.3. Suppose X is an irreducible entropy minimal shift space and let ϕ :
X → Y be an entropy preserving factor code. Then, ϕ−1(D(Y )) = D(X). In particular,

if X is synchronized, then ϕ has a degree and Y is synchronized as well.

Proof. For the first part a similar result holds for irreducible sofic shifts [4, Lemma
9.1.13]. The main ingredients for the proof of that result is to have X compact, ϕ entropy
preserving and the fact that entropy minimality holds for irreducible sofics [4, Corollary
4.4.9]. All of them are provided here.

The second part is a direct application of [3, Theorem 3.3] and [3, Theorem 4.2]. □

Theorem 3.4. If X is an entropy minimal synchronized system with Fischer cover

G = (G,L), then h(X) = h(G).

Proof. One has h(X) = max{h(G), h(∂X)} [6, Theorem 6.16]. Also, ∂X is a proper
subsystem of X, and so h(X) = h(G). □

Theorem 3.5. Let X be an entropy minimal synchronized system and ϕ : X → Y a

factor code. Then, ϕ is entropy preserving if and only if it has a degree.

Proof. By Theorem 3.3 necessity is at hand, so we prove sufficiency. Assume ϕ has
a degree. Since X is entropy minimal, h(X) = h(GX) where GX is the underlying graph
of Fischer cover of X (Theorem 3.4). So, h(X) = h(GX) = h(GY ) = h(Y ). □

Theorem 3.6. Suppose X is a subshift with positive topological entropy. Then, any

invariant measure on X with maximal entropy is of full support if and only if X is entropy

minimal.

Proof. First let µX be the invariant measure on X with maximal entropy of full
support; so h(X) = hµX

. Suppose Y is a proper subsystem of X and h(Y ) = h(X). By
the variational principle

(2) h(Y ) = sup{hν : ν ∈ M(Y, σ)}

where M(Y, σ) is the set of all invariant measures. The shift map σ is expansive and so
there is a measure νY with h(Y ) = hνY . Set νX(A) = νY (A ∩ Y ) for A ∈ M(X) and
notice that νX is an invariant measure on X vanishing at the open set X \ Y . Now by a
direct verification, hνX = hνY = h(Y ) = h(X) which is absurd by the hypothesis.

For the converse assume that X is entropy minimal and let µ be the measure with
maximal entropy which is not of full support. Then there has to be a cylinder [u] ⊂ X
with µ([u]) = 0. Now Y = X \ ∪∞

i=−∞σ−i([u]) is a closed invariant subset of X and in
fact a proper subsystem of X with µ(Y ) = µ(X). Restrict µ to Y and call it µY . Then,
hµY

(Y ) = hµ(X) = h(X) and this in turn by applying (2) implies that h(Y ) = h(X)
which violates our assumption. □
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Theorem 3.7. Let X be a subshift with positive topological entropy. If X is intrinsi-

cally ergodic of full support, then X is entropy minimal. The converse is true whenever

X is synchronized.

Proof. Apply Theorem 3.6 and the fact that a maximal measure of full support for
synchronized systems is unique [6]. □

Let X be synchronized and fix a synchronizing word α ∈ B(X). Let Cn(α) be the set
of words v ∈ Bn(X) such that αvα ∈ B(X). Then the synchronized entropy hsyn(X) is
defined by

hsyn(X) = lim sup
n→∞

1

n
log |Cn(α)|.

This value is independent of α and h(X) ≥ hsyn(X). In general, h(X) ̸= hsyn(X); however,
Thomsen showed that for irreducible sofic shifts h(X) = hsyn(X). Later Jung extended
this result to SVGL shifts.

Theorem 3.8. Let X be a synchronized system with Fischer cover G = (G, L). Then

h(G) = hsyn(X). In particular, when X is entropy minimal or equivalently if X is intrin-

sically ergodic of full support, then h(X) = hsyn(X).

Proof. First we show that h(G) ≤ hsyn(X). Let α ∈ B(X) be a synchronizing word.
Then all elements of L−1(α) have the same terminal vertex, say I and suppose Ln denote
the set of cycles in XG of length n starting and terminating at I. Set π ∈ Ln(I) and
L(π) = v. Also, let min{|w| : αwα ∈ B(X)} = k and w′ ∈ Ck(α). Then vw′ ∈ Cn+k(α).
Since L∞ is right-resolving,

L : Ln(I) −→ Cn+k(α)

is injective. So,

lim sup
n→∞

1

n
logLn(I) ≤ lim sup

n→∞

1

n
logCn+k(α) = hsyn(X).

By (1), lim supn→∞
1
n
logLn(I) = h(G). So h(G) ≤ hsyn(X).

The converse is quite similar! Let |α| = l and v ∈ Cn(α) with π ∈ L−1(v). Since all
elements of L−1(α) have the same terminal vertex I, then for some π′ ∈ L−1(α), ππ′ is a
cycle in G starting and terminating at I. So

hsyn(X) = lim sup
n→∞

1

n
logCn(α) ≤ lim sup

n→∞

1

n
logLn+l(I).

Now suppose X is entropy minimal. Then by Theorem 3.4, h(X) = h(G) and hence
by above result, h(X) = hsyn(X).

□
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