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ABSTRACT. Using the action of a Lie group on a hypergroup, the notion of Lie hyper-
group is defined. It is proved that tangent space of a Lie hypergroup is a hypergroup
and that a differentiable map between two Lie hypergroup is good homomorphism if and
only if its differential map is a good homomorphism.
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1. Introduction

The concept of hypergroup arose originally as a generalization of the concept of ab-
stract group. This concept was first introduced by Marty in 1935 [5]. Furthermore, some
surveys and papers such as [1,5, 8] were published in the field of hypergroup and its ap-
plications. M. R Molaei at.el studied semi hypergroups and their properties in [3, 4, 6].
In this paper, we introduce Lie hypergroup from a geometric point of view by using the
action of a Lie group on a hypergroup. Some properties of quotient hypergroups are found.
Indeed, using of the action of a Lie group on a hypergroup Lie hypergroup is introduced
and some basic properties are given. It is proved that if left transformation on a Lie hy-
pergroup be homomorphism then the transformation on its associated Lie hypergroup is
homomorphism.

As follows, some basic notions and examples are reviewed.

Let P be a non-empty set and p*(P) be the set of all non empty subsets of P. A hy-
peroperation on P is a map o : P x P — p*(P) [2]. The ordered pair (P, o) is called a
hypergroupoid. If A and B are two non empty subsets of P and x € P, then

AoB =Useapecpaob,zoA={zr}oAand Aox = Ao{x}.

The hypergroupoid (P, o) with the following properties is called a hypergroup.
1)ao(boc)=(aob)oc, for all a,b,c € P,

2)aoP=Poa=P,forallacP.
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If there is an e € P such that a € aceNeoa, for all a € P, then e is called identity. Let
P be a hypergroup with at least one identity then an element a~! € P is inverse of a € P
ifecaoa'Nnatloa.

A hypergroup is called regular if it has at least one identity and for any element has at
least one inverse.
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REMARK 1.1. If every element of p has inverse, so (p; o p2)~! = Py © p1_1 for all

p1,p2 € P.

DEFINITION 1.2. [1] A subset S of a hypergroup (P, o) is called sub hypergroup if it
satisfies the following properties:
i)aobC S foralla,beS.
ii)aoS=Soa=S5 for every a € S.

ExAMPLE 1.3. (affine join space) Let V be a vector space. Define hyperoperation
0:VxV — P*(V)whichaob={Aa+ub : \,u>0,A+pu=1}foralla,beV. We
can see easily V' with this hyperoperation is a hypergroup and every subspace of V is a
sub hypergoup.

A mapping f from a hypergroup (Pp,0) to a hypergroup (P, ) is called a
1) homomorphism if for all z,y € Py, f(zoy) C f(z)o f(y).
2) good homomorphism if for all x,y € Py, f(xoy) = f(x) * f(y).
Let (T,7) be a topological space. Then, the family U consisting of all sets Sy = {U €
p*(T)|U C V,U € 7} is a basis for a topology on p*(7T"). This topology is denoted by
7. [9]

2. Lie hypergroup

In this section we define Lie hypergroup. Let (P, o) be a hypergroup, G be a Lie group
and G acts on P to the right by ¢. We recall that Gp, = {g € G : ¢(po,g) = po} is called
the stabilizer of action for pg € P. If P be a manifold then G/G,, = P [7]. Consider
[ P — G/G)p, be the isomorphism function between hypergroup P and Lie hypergroup
C’%o' ft: Gipo — P is defined by f~1(9Gp,) = ¢(g,p0). This isomorphism induces the

following hyperoperation on G/G)p,.

o' G/Gyy x G[Gpy — p*(G/Gp,)
where gG,, o' ¢'Gp, = f(pop’) which f(p) = gG,, and f(p') = ¢'Gp,
The identity set is e(G/Gp,) = {f(e) : e € e(P) }. If the hypergroup P is invertible,
then G/Gp, is invertible and the set of all inverses of gGp, in G/Gp, is i(gGp,) = {¢'Gp, :
f(e) € gGp, o §'Gp, N G'Gpy o' Gy }. Hence, G/Gp, is a hypergroup which we call Lie
hypergroup.

EXAMPLE 2.1. O(3), the set of orthogonal 3 x 3 matrices, acts on S? in the following
way:
0(A,z) = Az, for A € O3) and = € S%. O(3)/O(2) = S? [7]. Using example 1.3
0O(3)/0(2) is a Lie hypergroup.
Let us investigate some basic properties of Lie hypergroups. actually, Theses are general-
ization of Lie group properties.

REMARK 2.2. If P’ is a sub hypergroup of P then f(P’) is a sub hypergroup of G/Gp,.
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THEOREM 2.3. Let G be a Lie group and pg € P be a fixed element of hypergroup

P. If po € poopo and p(g1,po) © ¢(g2;po) = ¢(g192,p0 © po) for all g1,g2 € G. Then
9192Gp, € 91Gp, o 92Gpy .-

PROOF. Let p1 = ¢(g1,p0) and p2 = (g2, po). By assumptions

p1op2 = ¢(g1,p0) © ¢(92,p0) = ©(g192,Po © Po).

Hence, f~1(g192Gpy) = ©(9192,0) € p1 0 p2. S0, 9192Gpy € f(p1 0 p2) = 91Gp, o 92Gpy-
proof

THEOREM 2.4. Let (Py,01) and (Py,02) be hypergroups. Consider ¢1: Py x G — Py
and ps 1 Po Xx G — Py are good homomorphism actions. Consider py € Py and ps € P
are arbitrary and fized points. If o : G/Gp, — G/Gp, is a good homomorphism then
there is a map ¢ : P — P» such that the following diagram commutes and ¢ is a good
homomorphism. Where f : Py — G/Gp, and g : Po — G /G, are isomorphisms which
are correspond the actions ¢1 and pa2.

PROOF. Using assumptions 1 (w) = g~ o ¢g o f(w) = wa(pa, Yo(f(w))) for all w € Py.
Therefore,
b(wi)oath(wz) = @2(p2, o (f(wr))) 02pa(p2, Yo(f (w2))) = w2(p2, o (f(wi)) oy tho(f(w2))) =

<P2§P2,T/Jo(f(w1)) oh f(w2))) = walp2,o(f(wi o1 ws)) = gt ot o f(wr o1 wa) = Y(w1 ODl
w2 ).

As follows, tangent space of a hypergroup is introduced as a hypergroup. Consider
T, P is tangent space on the manifold P at point p and T'P = U,cpT), P is tangent bundle.
In addition, suppose that (P, o) be a hypergroup. Let vy € T}, P and vy € T}, P. Define
the hyperoperation # : TP xTP — p*(TP) where vi#ve ={v : ve€T,P p &€ piops }.

THEOREM 2.5. (T'P,#) is a hypergroup.

PROOF. Let v1,v9 and vs are arbitrary tangent vectors.
vi#(vaftvg) = {vi#v : veET,P pEpiops }
={v : VeTy,P pepopt={ : VeTyP pepo(props)}
={v : VeTyP p €(prop2)ops}= (vifv)#fvs.
Also for v € T, P, we have
v#TP ={v v €v#v, neT, P IppePt={ : v €TyP pepop} =TP.
Thus, (T'P,#) is a hypergroup.
This implies that the tangent bundle of a Lie hypergroup is a hypergroup. Let (P;,o1)
and (Ps,09) be hypergroups which are manifold too. By previous theorem (7'P;, #) and
(T' Py, #') are hypergroups. O

THEOREM 2.6. If ¢ : P, — P» is a differentiable function. Then, 1 is good homo-
morphism if and only if dip : TPy — TPy is good homomorphism.

PROOF. Let wi,ws € Py be arbitrary and v; € T, P; and ve € T, P1. Firsly, consider
1 is a good homomorphism. Let v € vi#wv2, di(v) € di(vi#ve2) such that v € T,,P; and
w € wy 01 we. Hence, dy)(v) € Ty P2 and P(w) € Y(wr 01 wa) = P(wy) 02 Y(w2). On the
other hand,

dip(v1)# dip(v2) = {v" = V' eTyP , W' €tp(wr)opP(wa)}.

Thus, di(v) € dip(v1)#dih(v2).
Conversely, if v € di(v1)# dip(ve) then v € Ty, Pe. Since, 9 is onto map so, there is
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v' € T, Py such that v' = dy)(v) and v € vi#ve. Hence, v € dip(v1#vs).

Secondly, consider di) is good homomorphism. Let w’ € 1(wy) 021 (w2) and v’ € T, P, so,
v € dip(vy)# dip(vy) = dip(v1#vs) where vy € T,,,, P and vy € T,,, P;. Therefore, there is
v € v1F#v9 such that v' = di(v) and there exists an w € wy o1 wy such that v' € T () P
Hence, w’' = 9(w) € (w1 01 wa).

Conversely, let w € wy 01 wy and W' = Y (w). If v € T,, P then dy)(v) € T, P,. Since, di) is
good homomorphism, di(v) € Ty () Pe. Therefore, 1(w) € ¢(wr) o2 Y(w2). O

REMARK 2.7. Let lyg, : G/Gp, — G /Gy, be left transformation on G/Gp, where
lycp, (¢'Gpy) = 99'Gpy. Then there is a transformation I, : P — P such that fol, =
lngo °© f

THEOREM 2.8. If g, @ G/Gp, — G /Gy, is a homomorphism left transformation.
Then ly : P — P is homomorphism.

PROOF. . Let p1,p2 € P be arbitrary and there are g1, go € G such that f(p1) = g1Gp,
and f(p2) = g2Gp,. Then

ly(prop2) = {lg(p) = pEpropa} ={f"olyG,, (9'Gp) : f(p)=g'Gpyp Eprop } =
{f_l(gg/Gpo) : g/Gpo € g1Gp, of 92Gpy b= {f_l(lgG'po (g/Gpo)) : g/Gpo € g1Gp, of
92Gp, }C fﬁl(lngO (gleo) of lngO (92Gpo)) = fﬁl(ggleo of 992Gpo) = fﬁl(glngo) ©
FH992Gp,) = (f 1 olya,, © (1) o (f 7! olya,, © f)(p2) = lg(p1) o ly(p2). O
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