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Abstract. In this paper, in order to develop a mathematical model underlying un-
certainty and fuzziness in a dynamical system, which is called relative mathematical
modeling, we are going to apply the notion of observer. First, by using a mathematical
model of a one dimensional observer, the notion of relative entropy for a relative dynam-
ical system having countably many atoms is considered. Also, some ergodic properties of
relative dynamical systems are investigated. At the end, a new version of Kolmogorov-
Sinai theorem for a relative dynamical system having countably many atoms is given.
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1. Introduction
Entropy is applicable and useful in studying the behavior of stochastic processes since it

represents the ambiguity and disorder of the processes without being restricted to the forms
of the theoretical probability distributions. Di昀昀erent entropy measures have been studied
and presented including Shannon entropy, Renyi entropy, Tsallis entropy, Sample entropy,
Permutation entropy, Approximate entropy, and Transfer entropy. Since in mathematical
modeling of physical systems the role of observer is important, so a method is needed to
measure the entropy of a system from the point of view of an observer. Any mathematical
model according to the view point of an observer is called a relative model [?, ?]. The
notion of a relative dynamical system as a generalization of a fuzzy dynamical system has
been de昀椀ned in [?]. Also, the concept of entropy of a relative dynamical system has been
introduced in [?, ?]. This article is an attempt to present a new approach to the entropy
of relative dynamical systems having countably many atoms.

2. Basic Notions
This section is devoted to provide some basic notions of relative structures. A modeling

for an observer of a set X is a fuzzy set Θ : X → [0, 1] [?]. In fact this kinds of fuzzy
∗Uosef Mohammadi. Email address: u.mohamadi@ujiroft.ac.ir

1



U. Mohammadi

sets are called ” one dimentional observes”. The idea is based on the relation between
”experiance ” and ”information” from the view point of an observer. Let Θ be an observer
on X, then we say λ ⊆ Θ if λ(x) ≤ Θ(x) for all x ∈ X. Moreover, if λ1, λ2 ⊆ Θ then
λ1 ∨ λ2 and λ1 ∧ λ2 are subsets of Θ, and de昀椀ned by

(λ1 ∨ λ2)(x) = sup{λ1(x), λ2(x)},

and
(λ1 ∧ λ2)(x) = inf{λ1(x), λ2(x)},

where x ∈ X.

Definition 2.1. A collection FΘ of subsets of Θ is said to be a σΘ-algebra in Θ if FΘ

satis昀椀es the following conditions [?],
(i) Θ ∈ FΘ,
(ii) λ ∈ FΘ then λ

′

= Θ− λ ∈ FΘ. λ
′ is the complement of λ with respect to Θ,

(iii) if {λi}
∞
i=1

is a sequence in FΘ then ∨∞
i=1

λi = supi λi ∈ FΘ,
(iv) Θ

2
doesn’t belong to FΘ.

If P1 and P2 are σΘ-algebras on X then P1∨P2 is the smallest σΘ-algebra that contains
P1 ∪ P2, denoted by [P1 ∪ P2].

Definition 2.2. A positive Θ−measure mΘ over FΘ is a function mΘ : FΘ → I which
is countably additive. This means that if λi is a disjoint countable collection of members
of FΘ, (i.e. λi ⊆ λ

′

j = Θ− λj whenever i ̸= j) then

mΘ(∨
∞
i=1λi) =

∞∑

i=1

mΘ(λi).

The Θ−measure mΘ has the following properties [?],
(i) mΘ(χ∅) = 0,
(ii) mΘ(λ

′

∨ λ) = mΘ(Θ) and mΘ(λ
′

) = mΘ(Θ)−mΘ(λ) for all λ ∈ FΘ,
(iii) mΘ(λ ∨ µ) +mΘ(λ ∧ µ) = mΘ(λ) +mΘ(µ) for each λ, µ ∈ FΘ,
(iv) mΘ is a nondecreasing function i.e. if λ, η ∈ FΘ and λ ⊆ Θ, then mΘ(λ) ≤ mΘ(η).

The triple (X,FΘ,mΘ) is called a Θ− measure space and the elements of FΘ are
called relative measurable sets. The Θ− measure space, (X,FΘ,mΘ), is called a relative
probability Θ−measure space if mΘ(Θ) = 1 [?].

Example 2.3. Let (X, β, p) be a classical probability measure space and Θ = χX .
Then FΘ = {χA : A ∈ β} is a σΘ-algebra on X. De昀椀ne mΘ(χA) = p(A), A ∈ β. Then
(X,FΘ,mΘ) is a relative probability Θ− measure space.

Definition 2.4. Let (X,FΘ,m) be a Θ−measure space, the elements µ,λ of FΘ are
called mΘ-disjoint if mΘ(λ ∧ µ) = 0.

A Θ−relation ’=(mod mΘ)’ on FΘ is de昀椀ned as bellow
λ = µ(mod mΘ) i昀昀 mΘ(λ) = mΘ(µ) = mΘ(λ ∧ µ),

for each λ, µ ∈ FΘ.
Θ−relation ’=(mod mΘ)’ is an equivalence relation. F̃Θ denotes the set of all equivalence
classes induced by this relation, and µ̃ is the equivalence class determined by µ. For
λ, µ ∈ FΘ, λ ∧ µ = 0 (mod mΘ) i昀昀 λ, µ are mΘ-disjoint. We shall identify µ̃ with µ.
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Definition 2.5. Let (X,FΘ,mΘ) be a Θ−measure space, and P be a sub-σΘ-algebra
of FΘ. Then an element λ̃ ∈ P̃ is an atom of P if

(i) mΘ(λ) > 0,
(ii) for each µ̃ ∈ P̃ such that mΘ(λ ∧ µ) = mΘ(µ) ̸= mΘ(λ) then mΘ(µ) = 0.

Theorem 2.6. Let (X,FΘ,mΘ) be a Θ−measure space, and P be a sub-σΘ-algebra of
FΘ. If λ̃1,λ̃2 are disjoint atoms of P then they are mΘ-disjoint.

3. Entropy of a sub-σΘ-algebra with countable atoms
In this section we introduce the notion of entropy of a sub-σΘ-algebra with countable

atoms. At the following, the set of all sub-σΘ-algebra of FΘ with countable atoms is
denoted by R∗(FΘ). Assume that FΘ is a σΘ-algebra and P1, P2 ∈ R∗(FΘ), and {λi; i ∈ N}
and {µj ; j ∈ N} denote the atoms of P1 and P2 respectively, then the atoms of P1 ∨P2 are
λi ∧ µj which mΘ(λi ∧ µj) > 0 for each i, j ∈ N.
If γ ∈ F̄Θ we set

P1 ∨ γ = {λi ∧ γ;mΘ(λi ∧ γ) > 0, i ∈ N}.

Theorem 3.1. Let {λi; i ∈ N} be a mΘ-disjoint collection of relative measurable sets
of relative probability Θ-measure space (X,FΘ,mΘ), then,

mΘ(∨
∞
i=1(λi)) =

∞∑

i=1

mΘ(λi).

Definition 3.2. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and
P1, P2 ∈ R∗(FΘ). We say that P2 is an mΘ-re昀椀nement of P1, denoted by P1 ≤mΘ

P2, if
for each µ ∈ P̄2 there exists λ ∈ P̄1 such that,

mΘ(λ ∧ µ) = mΘ(µ).

Theorem 3.3. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and P1, P2, P3 ∈
R∗(FΘ) if P1 ≤mΘ

P2 then,
P1 ∨ P3 ≤mΘ

P2 ∨ P3.

Definition 3.4. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P

be a sub σΘ-algebra of FΘ which P ∈ R∗(FΘ), the entropy of P is de昀椀ned as
HΘ(P ) = − log sup

i∈N

mΘ(µi),

where {µi; i ∈ N} are atoms of P .

Definition 3.5. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and
P ∈ R∗(FΘ). The conditional entropy of P given γ ∈ F̄Θ is de昀椀ned by

HΘ(P |γ) = − log sup
i∈N

mΘ(µi|γ),

where,
mΘ(µi|γ) =

mΘ(µi ∧ γ)

mΘ(γ)
(mΘ(γ) ̸= 0).

Theorem 3.6. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P1, P2 ∈
R∗(FΘ) which P̄1 = {λi; i ∈ N} and P̄2 = {µj ; j ∈ N}. Then,

(i) P1 ≤mΘ
P2 ⇒ HΘ(P1) ≤ HΘ(P2),

(ii) P1 ≤mΘ
P2 ⇒ HΘ(P1|γ) ≤ HΘ(P2|γ).
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Definition 3.7. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and
P1, P2 ∈ R∗(FΘ). We say that P1 and P2 are mΘ-equivalent, denoted by P1 ≈mΘ

P2, if
the following axioms are satis昀椀ed:

(i) If λ ∈ P̄1 then mΘ(λ ∧ (∨{µ;µ ∈ P̄2})) = mΘ(λ).
(ii) If µ ∈ P̄2 then mΘ(µ ∧ (∨{λ;λ ∈ P̄1})) = mΘ(µ).

Theorem 3.8. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P1, P2 ∈
R∗(FΘ). If P1 ≈mΘ

P2 then,
P1 ≈mΘ

P1 ∨ P2.

Theorem 3.9. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P1, P2 ∈
R∗(FΘ). If P1 ≈mΘ

P2 then,
HΘ(P1) ≤ HΘ(P1 ∨ P2).

Definition 3.10. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and
P ∈ R∗(FΘ). The diameter of P is de昀椀ned as follows

diamP = sup
λi∈P̄

mΘ(λi).

Definition 3.11. Let (X,FΘ,mΘ) be a relative probability Θ−measure space,and
P1, P2 ∈ R∗(FΘ), which P̄1 = {λi; i ∈ N}, P̄2 = {γk; k ∈ N}. The conditional entropy of
P1 given P2 is de昀椀ned as

HΘ(P1|P2) = − log sup
i∈N

diam(λi ∨ P2)

diamP2

= − log sup
j∈N

diam(P1 ∨ µj)

diamP2

.

Theorem 3.12. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and
P1, P2, P3 ∈ R∗(FΘ). Then,

(i) P2 ≤mΘ
P3 ⇒ HΘ(P1|P2) ≤ HΘ(P1 ∨ P3),

(ii) HΘ(P1|P2) ≤ HΘ(P1 ∨ P2).
Theorem 3.13. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and

P1, P2, P3 ∈ R∗(FΘ). If P1 ≤mΘ
P2 then,

HΘ(P1|P3) ≤ HΘ(P2|P3).

4. Entropy of a relative dynamical system having countably many
atoms
Definition 4.1. Suppose (X,FΘ,mΘ) be a Θ−measure space and Θ be a constant ob-

server on X. A transformation ϕ : (X,FΘ,mΘ) → (X,FΘ, nΘ), is said to be a Θ−measure
preserving if mΘ(ϕ

−1(µ)) = nΘ(µ) for all µ ∈ F̄Θ.
Theorem 4.2. Suppose ϕ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure preserving

transformation. Then for each P ∈ R∗(FΘ) we have,
HΘ(P ) = HΘ(ϕ

−1(P )).

Definition 4.3. Suppose ϕ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure preserving
transformation. If P ∈ R∗(FΘ), we de昀椀ne the entropy of ϕ with respect to P as:

hΘ(ϕ, P ) = lim
n→∞

1

n
HΘ(∨

n−1

i=0
ϕ−i(P )).
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Theorem 4.4. Let ϕ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure preserving trans-
formation and P ∈ R∗(FΘ). Then,

(i) hΘ(ϕ,ϕ
−1(P )) = hΘ(ϕ, P ),

(ii) hΘ(ϕ,∨
r−1

i=0
ϕ−i(P )) = hΘ(ϕ, P ) for every r ≥ 1.

Theorem 4.5. Let ϕ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure preserving trans-
formation and P1, P2 ∈ R∗(FΘ). Then,

(i) P1 ≤mΘ
P2 ⇒ hΘ(ϕ, P1) ≤ hΘ(ϕ, P2),

(ii) if P1, P2 ∈ R∗(FΘ) such that P1 ≈mΘ
P2 then,

ϕ−1(P1) ≈mΘ
ϕ−1(P2).

Definition 4.6. The entropy of the relative dynamical system (X,FΘ,mΘ, ϕ) is the
number hΘ(ϕ) de昀椀ned by,

hΘ(ϕ) = sup
P

hΘ(ϕ, P ),

where the supremum is taken over all sub-σΘ-algebras of FΘ which P ∈ R∗(FΘ).

Definition 4.7. P ∈ R∗(FΘ) is said to be a mΘ-generator of the relative dynamical
system (X,FΘ,mΘ, ϕ) if there exists an integer r > 0 such that,

Q ≤mΘ
∨r
i=0ϕ

−iP,

for each Q ∈ R∗(FΘ).

Theorem 4.8. If P is a mΘ-generator of the relative dynamical system (X,FΘ,mΘ, ϕ)
then,

hΘ(ϕ,Q) ≤ hΘ(ϕ, P ),

for each Q ∈ R∗(FΘ).

Now we can deduce the following version of Kolmogorov-Sinai theorem for relative
dynamical systems having countably many atoms.

Theorem 4.9. If P is a mΘ-generator of relative dynamical system (X,FΘ,mΘ, ϕ)
then,

hΘ(ϕ) = hΘ(ϕ, P ).
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