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Abstract. The aim of this manuscript is to discuss the dynamics of a coronavirus dis-
ease 2019 (COVID–19) model. We first prove the positivity and boundedness of solution
of the proposed COVID–19 model. Thence, we determine the equilibrium points and
discuss the stability analysis of the model. In continuation, we show that the equilib-
rium points are locally asymptotically stable. We apply the nonstandard finite difference
(NSFD) scheme to study the dynamic behaviors COVID–19 model. In order to the
efficiency and accuracy of the proposed NSFD, some numerical results are presented.
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1. Introduction

Over the years, mathematical modelling proves its ability to obtain more understand-
ing of the dynamics disease models in the community. These models can help the re-
searchers to understand more about the spread process of virus that may turn into a
pandemic situation and may predict the conditions that will show the continuation or end
of these infections. In March 2020, the COVID–19 disease begins to spread throughout of
the world which is originated from Wuhan in China causing a global fear and devastating
effect which conclude the governments and scientists to find a suitable cure [1,2]. This
virus can mainly transmitted through the droplets of an infection person that can spread
when the person coughs, sneezes, or even while talking. The cases for the COVID–19
have been increasing since the beginning of 2020 such that now causing more than 230

∗Speaker. Email address: namjoo@vru.ac.ir

1



M. Namjoo, M. Aminian, M. Karami and M. J. Mohammad Taghizadeh

million infected persons and approximately 5 million deaths with a rate recovery 90 per-
cent and 10 percent death rate. Due to the above reasons, scientists have been working
extensively overall the last two years [3, 4]. In many cases, mathematical modelling of
a COVID–19 model can be described by a nonlinear autonomous initial value problem.
Since analytical solution a few numbers of these equations cannot obtained, hence, various
numerical methods were constructed to solve such equations. In this research, in order to
approximate the solution of the proposed COVID–19 model, we are going to construct an
efficient NSFD scheme. An appropriate mathematical model for the COVID–19 at time t

can be written as follows

(1)



















s′(t) = γr(t)− αs(t)i(t)− µss(t) + µ∗,

i′(t) = αs(t)i(t)− βi(t)− µii(t),

r′(t) = βi(t)− γr(t)− µrr(t),

s(0) = s0, i(0) = i0, r(0) = r0.

In this model, the total population individuals at each time t is divided into three groups.
Here, s(t) is the number of susceptible group at time t, i(t) is the number of infected
group at time t and r(t) denotes the recovered group at time t. Also, moving from the
susceptible group to the infected group occurs at a rate α and infected groups are supposed
to recover at a constant rate β. Moreover, the recovered individuals can again return to the
susceptible group at a constant rate of γ. Here the parameters µs, µi and µr denote death
rates of the susceptible, infected and recovered groups, respectively and the parameter µ∗

presents rates of birth the susceptible, infected and recovered groups. The organization
of the manuscript is as follows. In Section 2, we prove positivity and boundedness of
the solution model of (1). Section 3 deals with stability analysis of COVID–19 model.
In Section 4, we construct an efficient NSFD scheme for the COVID–19 model (1). The
numerical results are obtained by the NSFD scheme, show the efficiency of the NSFD
scheme.

2. Positivity and boundedness of solutions

In this part, we are going to show that the state variables are nonegative and bounded
that describes the COVID–19 model meaningful. First, we want to show that the solutions
s(t), i(t) and r(t) of the model (1), when they exist, are positive for all t ≥ 0 with
nonegative initial conditions.

Theorem 2.1. Consider the initial conditions as given in (1). Then the solutions
(s, i, r) are positive for all time t ≥ 0.

Proof. Since the sr-coordinate plane is invariant under the flows of system, this
implies that i(t) > 0 for all t ≥ 0. Let A = {t ≥ 0|r(t) < 0}, we will show that A = ∅.
Suppose that A 6= ∅ and let t0 = inf(A). Since r(0) > 0, so t0 > 0. Now the continuity of r
implies that r(t0) = 0 and by the third equation of system (1), r′(t0) = βi(t0) > 0. Hence,
there is ε > 0 such that r(t) > 0 for all t ∈ (t0− ε, t0+ ε). Consequently, r(t) ≥ r(t0) > 0,
for all time t ∈ (t0, t0 + ε) which contradicts t0 = inf(A). By a similar argument, we can
show that s(t) ≥ 0, for all t ≥ 0. �

In order to prove boundedness of the solutions of the system (1), we first state the
following proposition.

2



Study of qualitative behavior of a new coronavirus disease model

Proposition 2.2. Let K(t) : [0,+∞) −→ R be a derivative function such that K(t) ≥
0 for all t ≥ 0. If α > 0, β ∈ R, such that K ′(t) + αK(t) ≤ β, for all t ≥ 0, then

K(t) ≤ K(0) + β
α
.

Lemma 2.3. All the solutions (s(t), i(t), r(t)) of the system (1) are bounded.

Proof. Set K(t) = s(t) + i(t) + r(t) and suppose that m = min{µs, µi, µr}. Hence
K(t) +mK ′(t) ≤ µ∗. It follows from proposition 2.2 that s(t) + i(t) + r(t) ≤ s(0) + i(0) +

r(0) + µ∗

m
. This shows that the solutions s, i, r of model (1) are bounded. �

3. Stability analysis for the COVID–19 model

The equilibrium points of the COVID–19 model (1) are given by E1 = (µ
∗

µs
, 0, 0) and

E2 = (µi+β
α

, i∗, βi∗

γ+µr
), where i∗ =

µs(
µi+β

α
)−µ∗

γβ
γ+µr

−µi−β
.

Theorem 3.1. The system (1) is

(i) locally asymptotically stable at the equilibrium point E1 if and only if αµ∗

µs
− β −

µi < 0.
(ii) locally asymptotically stable at the equilibrium point E2 if and only if i∗ > 0.

Proof. The Jacobian matrix of system (1) corresponding to any equilbrium point
(s1, i1, r1) can be written as

J(s1, i1, r1) =





−αi1 − µs −αs1 γ

−αi1 αs1 − β − µi 0
0 β −γ − µr



 .

The Jacobian matrix of (1) at the equilibrium point E1 is obtained as given below

J(E1) =











−α
µ∗

µs
− µs −αµ∗

µs
γ

0 α
µ∗

µs
− β − µi 0

0 β −γ − µr











.

The corresponding eigenvalues are λ1 = −αµ∗

µs
−µs, λ2 = αµ∗

µs
− β−µi and λ3 = −γ−µr.

Therefore the equilibrium point E1 is locally asymptotically stable if and only if αµ∗

µs
−

β − µi < 0. At the equilibrium point E2 the Jacobian matrix is given

J(E2) =





−αi∗ − µs −µi − β γ

αi∗ 0 0
0 β −γ − µr



 .

Hence, we obtain that the characteristic equation can be presented in the following form

(2) P (λ) = λ3 + a1λ
2 + a2λ+ a3,

where

a1 = αi∗+µs+γ+µr, a2 = (αi∗+µs)(γ+µr)+αi∗(µi+β), a3 = αi∗(µi+β)(γ+µr)−γαi∗β.

Using the Routh-Hurwitz criteria, all roots of Eq. (2) have negative real parts if and only
if

(3) a1 > 0, a2 > 0, a3 > 0, a1a2 − a3 > 0.
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However, it can be shown that the conditions given by Eq. (3) will fulfill if i∗ > 0. Hence,
the equilibrium point E2 is locally asymptotically stable if and only if i∗ > 0. �

4. A NSFD scheme for the COVID–19 model

In this section, we are going to develop an explicit numerical scheme using NSFD
scheme which were firstly proposed by Mickens for an initial value problem. Many ap-
plications are available in literature using NSFD scheme [5]. In order to introduce the
general aspect of a NSFD scheme consider the following autonomous initial value problem

(4) X ′(t) = f(X(t)), X(0) = X0, t ∈ [0, tf ].

Suppose that a discretization tk = kh is given. A NSFD scheme for the problem (4) is
constructed by the following two steps.

(i) The first order deviation in the problem (4) at the k-th time step can be replaced

by a discrete form X ′(tk) ≈
Xk+1−Xk

φ(h) , where Xk is an approximation of the exact

solution X(tk) and moreover the denominator function φ(h) has to satisfy the
condition φ(h) = h+O(h2) with 0 < φ(h) < 1.

(ii) The nonlinear and linear terms in the right–hand–side equation have to replace
by nonlocal discrete approximations. According to the Mickens rules, a NSFD
scheme for the proposed COVID–19 model (1) can be written as

(5)



























sk+1 − sk

φ1
= γrk − αsk+1ik − µssk+1 + µ∗,

ik+1 − ik

φ2
= αsk+1ik − βik+1 − µiik+1,

rk+1 − rk

φ3
= βik+1 − γrk+1 − µrrk+1,

where the denominator functions are defined as

φ1(h) =
eµsh − 1

µs
, φ2(h) =

e(β+µi)h − 1

β + µi
, φ3(h) =

e(γ+µr)h − 1

γ + µr
.

The explicit form of (5) can be written as

(6)



























sk+1 =
sk + φ1γrk + φ1µ

∗

1 + αφ1ik + φ1µs
,

ik+1 =
(1 + αφ2sk+1)ik
1 + (β + µi)φ2

,

rk+1 =
βφ3ik+1 + rk

1 + (γ + µr)φ3
.

Proposition 4.1. If s0 > 0, i0 > 0 and r0 > 0, then for all stepsize h, the numerical
solutions are obtained from (6) are always positive.

5. Numerical analysis

This section is devoted to numerical interpretation of COVID–19 model using the pro-
posed NSFD scheme simulated with the help of Matlab software. In order to investigate
the numerical solutions of the proposed NSFD we consider two cases. At the first simu-
lation, we choose the parameter values µ∗ = 0.02, µs = 0.2, α = 0.6, β = 0.1, γ = 0.001
and µr = µi = 0.02 with the initial condition s0 = 30, i0 = 25 and r0 = 20 for simulating
time 1000 and the stepsize h = 0.4. Figure 1 confirms that the NSFD scheme (5) con-
verges to the equilibrium point E1 = (0.1, 0, 0). In Figure 2, we plot the behaviour of the
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NSFD scheme (5) for the parameter values β = 0.1, α = 0.05, µs = 0.2, µi = µr = 0.02,
γ = 0.001 and µ∗ = 0.5 with choosing stepsize h = 2 and initial condition s0 = 30, I0 = 25
and r0 = 20. The Figure 2, shows that (sk, ik, rk) approaches to the equilibrium point
E2 = (2.4, 0.1735, 0.8261).

6. Conclusion

In this article, the dynamics of the new COVID–19 model is investigated. The posi-
tivity and boundedness of the model is proved. The stability analysis for both equilibrium
points is obtained proving that the model is locally asymptotically stable for both equi-
librium points. The proposed COVID–19 model is solved using a NSFD scheme. The
simulation results show the effective of the NSFD scheme, even for choosing the large
stepsize h. As a future research work, we can focus on the fractional–order COVID–19
model and obtain an efficient NSFD scheme which preserves the positivity and stability
properties of the fractional order COVID–19 model.

Figure 1. Numerical simulation with h = 0.4 for the NSFD scheme (5)

Figure 2. Numerical simulation with h = 2 for the NSFD scheme (5)
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