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Abstract. In this talk, we solve the problem of the coexistence of periodic orbits in ho-
mogeneous parallel Boolean dynamical systems which are induced by majority function,
with a directed dependency graph. In particular, we show that periodic orbits of any
period can coexist. This result contrasts with the properties of their counterparts over
simple graphs with the same evolution operator, where only fixed points and 2−periodic
points can exist and coexist.
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1. Introduction

Many real-world phenomena are modeled as (finite) dynamical systems over large com-
plex networks. For example we can list them as the interactions of gene regulatory net-
works, the virus spreading thorough a computer network, the spread of a disease through
a social network, etc. Such coherent utilizations of (finite) dynamical systems in social
network, science and engineering make the research on this topic an interesting and im-
portant subject. We devote this paper to study a class of finite dynamical system that we
call it majority-PDDS.

Given a finite (non-empty) set of elements X and a function F : X → X, the pair
(X,F ), or simply F , is named a finite dynamical system. Throughout this work, X is
called the state space and F is named the evolution operator of the system.

Let (X,F ) be a finite dynamical system, a point x ∈ X is called a periodic point of
F of period t > 0 whenever F t(x) = x and F s(x) ̸= x for each 0 < s < t. We denote by
Pert(F ) the set of periodic points of F of period t. In particular, if t = 1 then x is called a
fixed point of F , and we denote by Fix(F ) the set of fixed points of F . Note that (X,F )
is called a fixed point system when all the periodic points are fixed points.
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A Boolean finite dynamical system is a finite dynamical system where the state space
and the evolution operator are Boolean. More precisely, in a Boolean finite dynamical
system (X,F ), X = {0, 1}n for some natural n and

F : {0, 1}n → {0, 1}n, F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

where each Fi is a Boolean function. Corresponding to this system, we consider the
underlying graph G = (V,E) on the vertex set {1, . . . , n} whose edge/arc set is

E = {(i, j) ; the variable xi is involved in the component function Fj}.

Throughout this work, we assume that for each 1 f i f n the variable xi appears in
the component function Fi, but to simplify, we remove all self-loops of G. The graph G

defined in this way is called dependency graph of F . The Boolean evolution operator F of a
Boolean finite dynamical system can update the (states of ) variables in a synchronous or
in an asynchronous manner. In the first case, the system is called parallel or synchronous,
while in the second case it is named sequential or asynchronous. In the literature, when
the dependency graph G = (V,E) is simple (resp. directed), these systems are denoted
by PDS and SDS (resp. PDDS and SDDS), respectively. If the evolution operator F is
induced by a function

f : {0, 1}n → {0, 1}

such that each Fj is computed by the restriction fj of f to the state of the entry j and
the entries i such that (i, j) ∈ E, then the system is called homogeneous. In this setting
we simply say F is an f−PDS, f−SDS (resp. f− PDDS and f−SDDS). In this paper,
we are going to study f−PDDS in the case that f is a majority function.

Following the notations of [3], let

sumn : {0, 1}n → N, sumn(a1, . . . , an) = a1 + · · ·+ an

and assume that the evolution operator F induced by

majorityn : {0, 1}n → {0, 1}, majorityn(a1, . . . , an) =

{

1, sumn(a1, . . . , an) g +n
2
,

0, otherwise

In this situation, we simply say F is a majority-PDS or majority-PDDS depending on G

is a simple or directed graph.
Goles and Olivos proved that every periodic point of a majority-PDS has period 2 or

1 (see [2]). Poljak and Turzik showed that for any arbitrary point x, xt is a periodic point
when t g O(n2) (see [5]). Moreover, Kaaser, Mallmann-Trenn, and Natale ( [1]) proved
that given an integer t and some graph G, it is NP-hard to decide whether there exists an
initial point x for which x

t is a periodic point.
Many papers were devoted to the study of majority-PDS while majority-PDDS has

net been study well. The main contribution of this paper is to show that periodic orbits
of any period can exist and coexist together in majority-PDDS despite the fact that in
majority-PDS only fixed points and 2-periodic points can exist and coexist together.

2. Main results

Let F be a majority-PDS over a simple graphG, then, as we mentioned before, Pert(F )
can be a non-empty set only in the case that t = 1, 2. As (1, . . . , 1) and (0, . . . , 0) are always
fixed points of F , it is clear that Per1(F ) = Fix(F ) ̸= ∅. It is worth remarking that in
many situations F is a fixed-point system. For example, if G is a tree or a complete graph
or a cycle of odd length, then F is a fixed point system, while fixed points and 2-periodic
points present simultaneously if G is a cycle of even length (see [4]). In this Section, we
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show that majority-PDDS behaves completely different from majority-PDS and periodic
points of any period may happens for a majority-PDDS.

Theorem 2.1. Given {n1, . . . , nr} ¢ N, r g 2, there exists a majority-PDDS which

presents periodic orbits of periods n1, . . . , nr simultaneously.

Proof. In order to prove the result, we introduce a specific majority-PDDS F and
we find all t that Pert(F ) ̸= ∅. Consider the majority-PDDS F over the directed graph
G = (V,E) where

V = {1, . . . ,m,m+ 1, . . . , 2m}

and

E = {(i, i+1), (i, i+m+1) | 1 f i f m−1}∪{(i, i+1), (i, i−m+1) |m f i f 2m−1}∪{(2m, 1), (2m,m+1)}

So, F : {0, 1}2m → {0, 1}2m is given by (F1, . . . , Fm, Fm+1, . . . , F2m) where

F1(x1, . . . , x2m) = majority3(x1, xm, x2m),

Fm+1(x1, . . . , x2m) = majority3(xm+1, xm, x2m),

∀2 f i f m Fi(x1, . . . , x2m) = majority3(xi, xi−1, xm+i−1)

and

∀m+ 2 f i f 2m Fi(x1, . . . , x2m) = majority3(xi, xi−1, xi−m−1).

Let a = (a1, . . . , am) be an arbitrary point of {0, 1}m and define

ba = (a1, . . . , am, a1, . . . , am) ∈ {0, 1}2m

It is straightforward to see that

F (ba) = (am, a1, . . . , am−1, am, a1, . . . , am−1).

Now consider the finite Boolean dynamical systemR : {0, 1}m → {0, 1}m whereR(x1, . . . , xm) =
(xm, x1, . . . , xm−1). It is clear that for each positive integer i,

F i(ba) = (Ri(a), Ri(a)).

This shows that for each a ∈ {0, 1}m, the orbit of ba in F is in one-to-one correspondence
with the orbit of a in R. On the other hand, all orbits of R are periodic orbits and
Pert(R) ̸= ∅ if and only if t|m. So, we conclude that for each a ∈ {0, 1}m, the orbit of ba

in F is a periodic orbit and in particular Pert(F ) ̸= ∅ for each t dividing m.
Now suppose that b = (b1, . . . , bm, bm+1, . . . , b2m) ∈ {0, 1}2m be such that for each

1 f i f m, bi ̸= bm+i, then one can easily see that b is a fixed point of F .
Finally, if b = (b1, . . . , bm, bm+1, . . . , b2m) ∈ {0, 1}2m is such that bi = bm+i for some

1 f i f m, then one can easily check that there exists a positive integer n and a ∈ {0, 1}m

such that Fn(b) = ba and so the orbit of b in F converges to the periodic orbit of ba in
F .

In few words, we have shown that Pert(F ) ̸= ∅ if and only if t divides m. Now to
prove the result, for a given {n1, . . . , nr} ¢ N, r g 2, let m be the least common multiple
of n1, . . . , nr and F as defined in previous paragraphs. As discussed before Pert(F ) ̸= ∅
for each t dividing m. So, F presents periodic orbits of periods n1, . . . , nr simultaneously
and the conclusion follows □
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3. Conclusion

Let F be a majority-PDS over a simple graph then, it is well-known that Pert(F )
can be a non-empty set only in the case that t = 1, 2. In this paper by a careful
study of periodic structure of a specific majority-PDDS, we conclude that for a given
{n1, . . . , nr} ¢ N, r g 2, one can find a majority-PDDS which presents periodic orbits
of periods n1, . . . , nr simultaneously. This shows that majority-PDDS behave completely
different from majority-PDS and studying their periodic structure is more difficult than
the case that the dependency graph is a simple graph.
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Applied Mathematics 3 (2), (1981) 93–105.
3. H S Mortveit, C M Reidys, An Introduction to Sequential Dynamical Systems, Springer, 2008.
4. L. Musavizadeh Jazaeri and L. Sharifan, Finding periodic points in majority parallel dynamical systems

over simple dependency graphs, submitted
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