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Abstract. Over the past century, mathematical modeling has made the connection
between important public health questions and the basic parameters of infection for a
proper understanding of the spread of disease has been used. Nowdays, every scientist
and researcher knows the importance and appreciation of dynamical systems and di昀昀er-
ential equations in ecology, biology, medicine, epidemiology and etc. The major topic in
epidemiology is when time a disease is epidemic, endemic or pandemic. This is usually
done by 昀椀nding the basic reproduction number, R0. In this paper, we study SIR and
SEIR models. In continuation after 昀椀nding equilibrium point, we prove three theorems
which analyzes locally and globally asymptotically stability and backward bifurcation.
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1. Introduction
We 昀椀rst give a brief literature to the modeling of epidemics; more thorough descrip-

tions may be found in [1,5]. One of the early triumphs of mathematical epidemiology was
the formulation of a simple model by Kermack and McKendrick (1927) whose predictions
are very similar to this behavior, observed in countless epidemics. The Kermack-Mendrick
model is a compartmental model based on relatively simple assumptions on the rates of
昀氀ow between di昀昀erent classes of members of the population and there is a threshold quan-
tity which is called the basic reproduction number and denoted by R0 which determines
whether there is an epidemic [3].

2. Modeling
The special case of the model proposed by Kermack and McKendrick in 1927 which is

the starting point for our study of epidemic models is as follows:
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S
′

= −βSI,

I
′

= βSI − αI,

R
′

= αI.

(1)

In this model, we assume that S(t) denotes the number of individuals who are susceptible
to the disease, that is, who are not infected at time t. I(t) denotes the number of infected
individuals, assumed infectious and able to spread the disease by contact with susceptibles.
R(t) denotes the number of individuals who have been infected and then removed from
the possibility of being infected again or of spreading infection. In this model infected
neighbors recover at rate α and infected neighbors transmit infection at rate β and it is
based on the following assumptions:
(i) An average member of the population makes contact sufficient to transmit infection
with βN others per unit time, where N represents total population size (mass action in-
cidence).
(ii) Infectives leave the infective class at rate I per unit time.
(iii) There is no entry into or departure from the population, except possibly through
death from the disease.
(iv) There are no any disease deaths, and the total population size is a constant N .
In many infectious diseases there is an exposed period after the transmission of infection
from susceptibles to potentially infective members but before these potential infectives
develop symptoms and can transmit infection. Cosider the SEIR model with some infec-
tivity in the exposed period, to incorporate an exposed period with mean exposed period
1
κ
, we add an exposed class E and use compartmentsS,E, I,R and total population size

N = S + E + I +R to give a generalization of the epidemic model (1) as follows:

S
′

= −βSI,

E
′

= βSI − κE,

I
′

= κE − αI.

(2)

3. Main Results
Now, we consider the SEIR model infectivity in the exposed stage,

S
′

= −βS(I + ϵE),

E
′

= βS(I + ϵE)− κE,

I
′

= κE − αI,

R
′

= αI.

(3)

The analysis of this model is the same as the analysis of (1), but with I replaced by E+ I.
That is, instead of using the number of infectives as one of the variables, we use the total
number of infected members, whether or not they are capable of transmitting infection. In
some diseases there is some infectivity during the exposed period. This may be modeled
by assuming infectivity reduced by a factor ε during the exposed period. Here, the disease
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states are E and I, and hence the Jacobin matrix is as follows:

J =

[
ϵβN − κ βN

κ −α

]

So the next generation matrix obtanied by the following matrices

F =

[
ϵβN βN

0 0

]
, V =

[
κ 0
−κ α

]

the matrix K = FV −1 is referred to as the next generation matrix for the system at the
disease-free equilibrium. Since FV −1 has rank 1, it has only one nonzero eigenvalue, and
since the trace of the matrix is equal to the sum of the eigenvalues, we see that

R0 =
εβN

κ
+

βN

α
,

the element in the 昀椀rst row and 昀椀rst column FV −1. If all of new infections are in a sin-
gle compartment, as the case here, the basic reproduction number is the trace of the matrix
FV −1. There are some situations in R0 < 1 in which it is possible to show that the asymp-
totic stability of the disease-free equilibrium is global, that is, all solutions approach the
disease-free equilibrium, only those with initial values sufficiently close to this equilibrium.

System (3) has a continuum of disease-free equilibria (DFE), given by: E0 = (N, 0, 0)
and the next generation operator method can be used to analyse the asymptotic stability
property of the DFE.

Theorem 3.1. Assume that the disease transmission model is given by

x
′

i = fi(x, y)− vi(x, y) i = 1, ..., n

y
′

j = gj(x, y) j = 1, ...,m
(4)

The diseasefree equilibrium of (3.1) is locally asymptotically stable if R0 < 1, but unstable
if R0 > 1.

Proof. Let F and V be as de昀椀ned as above, and let J21 and J22 be the matrices of
partial derivatives of g with respect to x and y evaluated at the disease-free equilibrium.
The Jacobian matrix for the linearization of the system about the disease-free equilibrium
has the block structure

J =

[
F − V 0
J21 J22

]

The disease-free equilibrium is locally asymptotically stable if the eigenvalues of the Jaco-
bian matrix all have negative real parts. Since the eigenvalues of J are those of (F − V )
andJ22, and the latter all have negative real parts by assumption, the diseasefree equilib-
rium is locally asymptotically stable if all eigenvalues of (F −V ) have negative real parts.
By the assumptions on F and V , F is nonnegative and V is a nonsingular M-matrix.
Hence, all eigenvalues of (F−V ) have negative real parts if and only if ρ(FV −1) < 1. It fol-
lows that the disease-free equilibrium is locally asymptotically stable if R0 = ρ(FV −1) < 1.
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Instability for R0 > 1 can be established by a continuity argument. If R0 ≤ 1, then for
any ε ≥ 0, ((1 + ε)I − FV −1) is a nonsingular M-matrix and by Lemma 3.1, ((1 + ε)I −

FV −1)−1 ≥ 0.
By Lemma 3.2, all eigenvalues of ((1 + ε)V − F ) have positive real parts. Since ε > 0 is
arbitrary, and eigenvalues are continuous functions of the entries of the matrix, it follows
that all eigenvalues of (V − F ) have nonnegative real parts. To reverse the argument,
suppose all the eigenvalues of (V − F ) have nonnegative real parts. For any positive ε,
(V + εI − F ) is a nonsingular M-matrix, and by Lemma 3.2, ρ(F (V + εI)−1) < 1.
Again, since ε > 0 is arbitrary, it follows that ρ(FV −1) ≤ 1. Thus, (F − V ) has at least
one eigenvalue with positive real part if and only if ρ(FV −1) > 1, and the disease-free
equilibrium is unstable whenever R0 > 1.

□

For globally asymptotically stable theorem, we will say that a vector is nonnegative
if each of its components is nonnegative, and that a matrix is if each of its entries is
non-negative. We rewrite the system (4) as

x
′

= −Ax− f̂(x, y)

y
′

j = gj(x, y) j = 1, ...,m.
(5)

Theorem 3.2. If -A is a nonsingular M-matrix and f̂ ≥ 0, if the assumptions on the
model (4) are satis昀椀ed, and if R0 < 1, then the disease-free equilibrium of (5) is globally
asymptotically stable.

Proof. The variation of constants formula for the 昀椀rst equation of (4) gives

x(t) = e−tAx(0)−
∫

t
0e

−(t−s)f̂(x(s), y(s))ds.

It can be shown that e−tA ≥ 0 if −A is an M-matrix. Because we have −A = B− sI with
B ≥ 0,

e−tA = etBe−stI = etBe−stI = etBe−st

and etB ≥ 0, since B ≥ 0. This, together with the assumption that f ≥ 0, implies that
0 ≤ x(t) ≤ e−tAx(0) and since etAx(0) → 0 as t → ∞ follows that t → ∞.
On other hand, there are another examples to show that the disease-free equilibrium may
not be globally asymptotically stable if the condition f̂ ≥ 0 is not satis昀椀ed.

□

Theorem 3.3. Consider model (3). A backward bifurcation occurs at R0 = 1.

Proof. the Jacobin matrix for system (3) at E0 = (N, 0, 0) is as follows:

J =

[
ϵβ1N − κ β1N

κ −α

]

Choosing β1 as the bifuraction parameter, then R0 = 1 and β1 =
κα

N(ϵα+ κ)

□
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4. Conclusion
We have established that the simple Kermack-McKendrick epidemic model (3) has

some basic properties:
(i) There is a basic reproduction number R0 such that if R0 < 1, the disease dies out while
if R0 > 1, there is an epidemic.
(ii) There is a relationship between the reproduction number and the 昀椀nal size of the epi-
demic, which is an equality if there are no disease deaths. And also, in epidemic models
the disease-free equilibrium is asymptotically stable if R0 < 1 and unstable if R0 > 1.
(iii) In models for which endemic equilibria exist near the disease-free equilibrium for
R0 < 1 the bifurcation is called a backward bifurcation.
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