

Conjugate of dynamical systems in locales

Ali Akbar Estaji^{1,*}, Maryam Robat Sarpoushi²

^{1,2}Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran

ABSTRACT. For a dynamical system (X, f), the concept of "conjugate" is studied by many authors. Our goal is to introduce and study this concept in pointfree topology to give a description of categorical properties of conjugate in localic dynalical systems. We give the relation between the category **TDS** of dynamical systems and the category **LDS** of localic dynamical systems and continuous maps between them.

Keywords: dynamical system, locale, functor, adjunction.

AMS Mathematics Subject Classification [2020]: 06D22, 37B99

1. Introduction

In this section we briefly touch category theory and give the definitions and results needed in the next section. For more details, the reader can see [5] and [4].

DEFINITION 1.1. Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors. A natural transformation $\tau : F \to G$ is a function $\tau : Obj\mathbb{C} \to \operatorname{Mor}\mathbb{D}$ assigning to each object A in \mathbb{C} a morphism $\tau_A : FA \to GA$ in \mathbb{D} such that for every morphism $f : A \to B$ in \mathbb{C} , $(Gf)(\tau_A) = \tau_A(Ff)$. In this case we denote τ by $(\tau_A)_{A \in \mathbb{C}}$, and call each τ_A a component of τ .

Let $G : \mathbb{D} \to \mathbb{C}$ be a functor and $A \in Obj\mathbb{C}$. A *universal arrow* from A to G is an object B of D together with a morphism $u : A \to GB$ in \mathbb{D} such that for each $D \in Obj\mathbb{D}$ and each morphism $f : A \to GD$ in \mathbb{C} there is a unique morphism $\overline{f} : B \to D$ in \mathbb{D} with $(G\overline{f}) \circ u = f$. Dualizing this, we get the notion of a couniversal arrow from A to G.

DEFINITION 1.2. Let $G : \mathbb{D} \to \mathbb{C}$ be a functor. A left adjoint to G is a functor $F : \mathbb{C} \to \mathbb{D}$ such that for each $A \in Obj\mathbb{C}$, $B \in Obj\mathbb{D}$ there is an isomorphism $\alpha_{A,B} : Hom_{\mathbb{D}}(FA, B) \to Hom_{\mathbb{C}}(A, GB)$ which is natural in A and B (that is, $(\alpha_{A,-})_{A \in Obj\mathbb{C}} : Hom(FA, -) \to Hom(A, G-)$ and $(\alpha_{-,B})_{B \in Obj\mathbb{D}} : Hom(F-, B) \to Hom(-, GB)$ are natural isomorphisms). In this case we write $F \dashv G$, and say (F, G, α) is an adjunction, or also G is a right adjoint to F.

THEOREM 1.3. For functors $F : \mathbb{C} \to \mathbb{D}$ and $G : \mathbb{D} \to \mathbb{C}$, the following are equivalent:

^{*}Speaker. Email address: aaestaji@hsu.ac.ir; aaestaji@gmail.com,

- (a) F is a left adjoint to G.
- (b) There exists a natural transformation $\eta : I_{\mathbb{C}} \to G \circ F$, called unit or front adjunction, such that for each $A \in Obj\mathbb{C}, \eta_A : A \to GFA$ is a universal arrow from Ato G.
- (c) There exists a natural transformation $\epsilon : F \circ G \to I_{\mathbb{D}}$, called counit or back adjunction, such that for each $B \in Obj\mathbb{D}$, $\epsilon_B : FGB \to B$ is a couniversal arrow from B to F.

Our references for frames and locales are [4] and [5].

A frame (or locale) is a complete lattice L in which the infinite distributive law

$$a \land \bigvee S = \bigvee \{a \land s \colon s \in S\}$$

holds for all $a \in L$ and $S \subseteq L$. We denote by 0 and 1, respectively, the bottom and top elements of L. A frame homomorphism (or frame map) is a map between frames which preserves finite meets, including the top element, and arbitrary joins, including the bottom element. An element $p \in L$ is said to be prime if p < 1 and $x \land y \leq p$ implies $a \leq p$ or $b \leq p$. Recall the contravariant functor Σ from **Frm** to the category **Top** of topological spaces which assigns to each frame L its spectrum ΣL of prime elements with $\Sigma_a = \{p \in$ $\Sigma L: a \leq p\}$ ($a \in L$) as its open sets. Also, we have $\Sigma L = \{f: L \to 2: f \text{ is a frame map }\}$, where $\mathbf{2} = \{0, 1\}$. The frame of all open sets of a topological space X is denoted by $\mathfrak{O}(X)$. The right adjoint of a frame homomorphism $h: L \to M$ is denoted by h_* . We shall use the terms "frame" and "locale" interchangeably, but when we wish to consider frame homomorphisms we will rather use "frame".

A localic map $f: L \to M$ is a meet-preserving mapping between locales the left adjoint of which preserves binary meets.

For the category **Loc**, we have the functor Lc: **Top** \rightarrow **Loc** by setting Lc(X) = $\mathfrak{O}(X)$ and Lc(f) = $\mathfrak{O}(f)_*$ where $\mathfrak{O}(f) = f^{-1}$.

A discrete-time dynamical system (X, f) is a continuous map f on a nonempty topological space X, i.e. $f: X \to X$. The dynamics is obtained by iterating the map. The reader can see [1, 2] and [3] for more informations on dynamical systems.

DEFINITION 1.4. A homomorphism of dynamical systems from (X, f) to (Y, g) is a map $\varphi : X \to Y$ such that $\varphi \circ f = g \circ \varphi$. In this case, we say that two dynamical systems are conjugated.

Adapting by this, we call (L, f) a locallic dynamical system if L is a locale and $f : L \to L$ is a locallic map.

2. Main results

Recall that for dynamical systems (X, f) and (Y, g), we call continuous function φ : $X \to Y$ a morphism if the following diagram commuts.

We denote the category of all topological dynamical systems and their morphisms by **TDS**. Now, we give the next definition.

DEFINITION 2.1. A localic dynamical system (L, f) is a localic map f on a locale L, that is, $f: L \to L$.

DEFINITION 2.2. Let (L, f) and (M, g) be localic dynamical systems. We call continuous function $h: L \to M$ a morphism if the following diagram commuts.

We denote the category of all localic dynamical systems and their morphisms by **LDS**. Here, we are going to give a relation between **TDS** and **LDS**.

For this, we define $\Sigma : \mathbf{LDS} \longrightarrow \mathbf{TDS}$ with $(L, f) \longmapsto (\Sigma L, \Sigma f^*)$. It is clear that if $h: L \to M$ be a localic map such that $h \in Hom((L, f), (M, g))$, then $g \circ h = h \circ f$. This implies that $\Sigma h^* \circ \Sigma g^* = \Sigma f^* \circ \Sigma h^*$ which means that

and therefore $\Sigma h^* \in Hom((\Sigma M, \Sigma g^*), (\Sigma L, \Sigma f^*))$. Threfore we have:

PROPOSITION 2.3. The functor Σ is a countravariant functor from LDS to TDS.

Now, we define Lc : **TDS** \longrightarrow **LDS** with $(X, f) \mapsto (Lc(X), Lc(f))$. It is clear that if $h : X \to Y$ be a morphism such that $h \in Hom((X, f), (Y, g))$, then $g \circ h = h \circ f$. This implies $Lc(h) \circ Lc(f) = Lc(g) \circ Lc(h)$, which means that the next diagram commuts

$$\begin{array}{c|c} \operatorname{Lc}(X) \xrightarrow{\operatorname{Lc}(f)} \operatorname{Lc}(X) \\ \downarrow \\ \operatorname{Lc}(h) & & & \downarrow \\ \operatorname{Lc}(Y) \xrightarrow{} & \operatorname{Lc}(Y) \\ \hline & & & \operatorname{Lc}(Y) \end{array}$$

and therefore $Lc(h) \in Hom((Lc(X), Lc(f)), (Lc(Y), Lc(g)))$. Thus we have:

PROPOSITION 2.4. The functor Lc is a covariant functor from TDS to TDS.

Now, Put $\lambda : I_{\mathbf{TDS}} \to \Sigma Lc$ such that, for every $X, \lambda_X : X \longrightarrow \Sigma Lc(X)$ is given by $x \longmapsto \{U \in \mathfrak{O}(X) : x \in U\}$. Now, let $h : (X, f) \to (Y, g)$ be a morphism in **TDS**, then $g \circ h = h \circ f$. This implies $\Sigma Lc(h) \circ \lambda_X = \lambda_Y \circ h$ and so the following diagram is commuted:

$$\begin{array}{c|c} X & \stackrel{\lambda_X}{\longrightarrow} \Sigma \mathrm{Lc}(X) \\ h & & & \downarrow \\ h & & & \downarrow \\ Y & \stackrel{}{\longrightarrow} \Sigma \mathrm{Lc}(h) \\ Y & \stackrel{}{\longrightarrow} \Sigma \mathrm{Lc}(Y) \end{array}$$

We put $\varphi: L \longrightarrow Lc\Sigma L$ with $a \longmapsto \{F : a \in F, F \text{ is a completely prime filter on } L\}$. It is clear that φ is a frame map. Now, we define $\sigma: Lc\Sigma \to I_{LDS}$ and set $\sigma_L = (\varphi_L)_*$. Now, let $f: X \to X$ be a continuous function, then, for a completely prime filter F, we have $(\Sigma Lc(f))(F) = (Lc(f)^*)^{-1}(F)$ This implies that, for $h: X \to Y$, we have $\Sigma Lc(h)\lambda = \lambda_Y h$. **PROPOSITION 2.5.** The function λ_X is a natural transformation.

Now, let $f: L \to M$ be a localic map. We have

$$\begin{array}{c|c} (\mathrm{Lc}\Sigma)(L) \xrightarrow{\sigma_L} L \\ (\mathrm{Lc}\Sigma)(f) & & & \downarrow f \\ (\mathrm{Lc}\Sigma)(M)_{\sigma_M} \xrightarrow{} M \end{array}$$

and so $f \circ \sigma_L = \sigma_M \circ (\mathrm{Lc}\Sigma)(f)$ which implies that $\sigma_L^* \circ f^* = (\mathrm{Lc}\Sigma)(f)^* \circ \sigma_M^*$.

Let $\lambda : I_{\mathbf{TDS}} \to \Sigma \mathrm{Lc.}$ For every $(X, f) \in Obj(\mathbf{TDS})$, we have $\lambda_{(X,f)} : (X, f) \to \Sigma \mathrm{Lc}(X, f)$ where $\lambda_{(X,f)} = \lambda_X : X \to \Sigma \mathrm{Lc}(X)$ is a continuous function. It is easy to see that, for every $x \in X$, we have $\Sigma(\mathrm{Lc}(f))\lambda_{(X,f)}(x) = \lambda_{(X,f)}f(x)$ which shows that the following diagram is commuted:

$$\begin{array}{c|c} X & \xrightarrow{f} & X \\ & \lambda_{(X,f)} & & \downarrow^{\lambda_{(X,f)}} \\ & \Sigma \mathrm{Lc}(X) \xrightarrow{}_{\Sigma(\mathrm{Lc}(f))} \Sigma \mathrm{Lc}(X) \end{array}$$

Now, let $h : (X, f) \to (Y, g)$ be a morphism in **TDS**. Thus, for every $x \in X$, we have $\Sigma(\operatorname{Lc}(h)) \circ \lambda_{(X,f)}(x) = \lambda_{(Y,g)} \circ h(x)$ which shows that the following diagram commuts.

$$\begin{array}{ccc} (X,f) & \longrightarrow & \stackrel{\wedge (X,f)}{(\Sigma}(\operatorname{Lc}(X)), \Sigma(\operatorname{Lc}(f))) \\ h & & & & & \downarrow \\ h & & & & \downarrow \\ (Y,g) & \longrightarrow & (\Sigma(\operatorname{Lc}(Y)), \Sigma(\operatorname{Lc}(g))) \end{array}$$

For every (L, f), we define $\sigma_{(L,f)}$: $(Lc\Sigma(L), Lc\Sigma(f)) \to (L, f)$ where $\sigma_{(L,f)} = (\varphi)_*$: $Lc\Sigma L \to L$ is a localic map. One can see that $\sigma_{(L,f)} \circ Lc\Sigma f = f \circ \sigma_{(L,f)}$ which shows that the following diagram commuts.

$$\begin{array}{c|c} \mathrm{Lc}\Sigma L \xrightarrow{\mathrm{Lc}\Sigma f} \mathrm{Lc}\Sigma L \\ & \sigma_{(L,f)} \middle| & & & \downarrow \sigma_{(L,f)} \\ & & L \xrightarrow{f} L \end{array}$$

Now, let $h: (L, f) \to (M, g)$ be a morphism in **LDS**. We have $\sigma_{(M,g)} \circ \operatorname{Lc}\Sigma h = h \circ \sigma_{(L,f)}$ which shows that the following diagram commuts.

$$\begin{array}{c|c} (\mathrm{Lc}\Sigma L, \mathrm{Lc}\Sigma f)^{o(L,f)} & (L,f) \\ & & L_{\mathrm{c}\Sigma L} \\ & & \downarrow h \\ (\mathrm{Lc}\Sigma M, \mathrm{Lc}\Sigma g)_{(M,g)} & (M,g) \end{array}$$

PROPOSITION 2.6. The function σ is a natural transformation.

3. Conclusion

COROLLARY 3.1. Let $\Sigma : LDS \to TDS$ and Lc : $TDS \to LDS$ be as the same in the previous section. Then Lc $\dashv \Sigma$.

Acknowledgement

The authers thank the kind hospitality of Hakim Sabzevari University during several times we stayed there.

References

- E. Akin and J.D. Carlson, Conceptions of topologic transitivity, Topology and its Applications, 159 (2012), 2815–2830.
- 2. N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, Volume 52, Recent Advances.
- 3. G. Birkhoff, Dynamical Systems, Amer. Math. Soc., Providence, RI, (1927).
- 4. P.T. Johnstone, Stone Spaces, Cambridge Univ. Press, Cambridge, (1982).
- 5. J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Birkhauser/Springer, Basel AG, Basel, (2012).