

Mean curvature of semi-symmetric metric connections

Elham Zangiabadi^{1,*}, Zohreh Nazari²

¹Department of mathematics, Vali-e-Asr university, Rafsanjan, Iran ²Department of mathematics, Vali-e-Asr university, Rafsanjan, Iran

ABSTRACT. In this paper, we first introduce semi-symmetric metric and semi-symmetric non-metric connections on a (n+p)-dimensional semi-Riemannian manifold (M, g). Then we obtain relations between mean curvatures of these connections and the Levi-Civita connection.

Keywords: Mean curvature, Semi-symmetric metric connection, semi-symmetric non metric connection.

AMS Mathematics Subject Classification [2020]: 53B05, 53B15

1. Introduction

The notion of semi-symmetric connections on a differentiable manifold is introduced by Friedman and Schouten in 1924 [3]. The study of it was further developed by some researcher such as Yano [6] and Chaki and Konar [2].

These mentioned connections have applications in Physics. There are various physical problems involving them.

In this work, we find relations between mean curvatures of these connections and the Levi-Civita connection.

In the following, we provide basic information used in the paper.

A linear connection ∇ on a semi-Riemannian manifold (M, g) is said to be semi-symmetric if the torsion tensor T of the connection ∇ satisfies

(1)
$$T(X,Y) = \omega(Y)X - \omega(X)Y,$$

for any vector fields X, Y on M and ω is a 1-form given by $\omega(X) = g(X, W)$, where W is the vector field associated with the 1-form ω .

If $\nabla g = 0$, then the connection ∇ is said to be a metric connection; otherwise, it is called non-metric [4].

Now let (M, g) be an (n + p)-dimensional semi-Riemannian manifold endowed with an

^{*}Speaker. Email address: e.zangiabadi@vru.ac.ir,

n-distribution \mathcal{D} . The real vector space of all symmetric bilinear mappings $g_x : \mathcal{D} \times \mathcal{D} \longrightarrow \mathbb{R}$, is denoted by $L^2_s(\mathcal{D}_x, \mathbb{R})$. Then we consider the vector bundle

$$L^2_s(\mathcal{D},\mathbb{R}) = \bigcup_{x \in M} L^2_s(\mathcal{D}_x,\mathbb{R})$$

over M. The metric tensor g induces a global section of $L^2_s(\mathcal{D}, \mathbb{R})$ which is denoted by the same symbol g. If g is non-degenerate, the pair (\mathcal{D}, g) is a semi-Riemannian distribution. Also the vector bundle D^{\perp} is considered as follows

$$\mathcal{D}^{\perp} = \bigcup_{x \in M} \mathcal{D}_x^{\perp},$$

where \mathcal{D}_x^{\perp} is the complementary orthogonal subspace to \mathcal{D}_x in (T_xM, g_x) . The metric tensor g induces a semi-Riemannian metric on \mathcal{D}^{\perp} , and here again we denote it by g. Therefore (\mathcal{D}^{\perp}, g) is a semi-Riemannian distribution. Thus we have

(2)
$$TM = \mathcal{D} \oplus \mathcal{D}^{\perp}$$

Also the mappings \mathcal{P} and \mathcal{Q} are the projection morphisms of TM on \mathcal{D} and \mathcal{D}^{\perp} respectively.

(3)

$$a) \ H(X, \mathcal{P}Y) = \mathcal{Q} \nabla_X \mathcal{P}Y, \ b) \ H^{\perp}(X, \mathcal{Q}Y) = \mathcal{P} \nabla_X \mathcal{Q}Y,$$

where \tilde{H} and \tilde{H}^{\perp} are the second fundamental forms of \mathcal{D} and \mathcal{D}^{\perp} with respect to $\tilde{\nabla}$, respectively [1].

2. Main Results

We now suppose that the semi-Riemannian manifold (M,g) admits a semi-symmetric metric connection given by

(4)
$$\nabla_X Y = \tilde{\nabla}_X Y + \omega(Y)X - g(X, Y)W,$$

where $\tilde{\nabla}$ is the Levi-Civita connection on (M, g), ω is a 1-form and W is the vector field defined by

(5)
$$g(W,X) = \omega(X)$$

for any vector field X of M (see [5], [6]).

We call H (resp. H^{\perp}) the second fundamental forms of \mathcal{D} (resp. \mathcal{D}^{\perp}) with respect to ∇ . Since ∇ is metric by using (??a) and (??b) we obtain that

(7)
$$g(H(X, \mathcal{P}Y), \mathcal{Q}Z) = g(\nabla_X \mathcal{P}Y, \mathcal{Q}Z)$$
$$= -g(\mathcal{P}Y, \nabla_X \mathcal{Q}Z)$$
$$= -g(H^{\perp}(X, \mathcal{Q}Z), \mathcal{P}Y).$$

By defination of the semi-symmetric metric connection ∇ and by (3a), (3b), (6a) and (6b) we deduce that

$$H(X, \mathcal{P}Y) = H(X, \mathcal{P}Y) + \omega(\mathcal{P}Y)\mathcal{Q}X - g(X, \mathcal{P}Y)\mathcal{Q}W,$$

and

$$H^{\perp}(X, \mathcal{Q}Y) = \tilde{H}^{\perp}(X, \mathcal{Q}Y) + \omega(\mathcal{Q}Y)\mathcal{P}X - g(X, \mathcal{Q}Y)\mathcal{P}W.$$

Therefore

(8)
$$H(\mathcal{P}X, \mathcal{P}Y) = \tilde{H}(\mathcal{P}X, \mathcal{P}Y) - g(\mathcal{P}X, \mathcal{P}Y)\mathcal{Q}W,$$

(9)
$$H^{\perp}(\mathcal{Q}X, \mathcal{Q}Y) = \tilde{H}^{\perp}(\mathcal{Q}X, \mathcal{Q}Y) - g(\mathcal{Q}X, \mathcal{Q}Y)\mathcal{P}W.$$

The second fundamental forms and the shap operators of the distributions \mathcal{D} and \mathcal{D}^{\perp} are related by [1]

(10)
$$g(H(\mathcal{P}X,\mathcal{P}Y),\mathcal{Q}Z) = g(A_{\mathcal{Q}Z}\mathcal{P}X,\mathcal{P}Y),$$

and

(11)
$$g(\tilde{H}^{\perp}(\mathcal{Q}X,\mathcal{Q}Y),\mathcal{P}Z) = g(\tilde{A}^{\perp}_{\mathcal{P}Z}\mathcal{Q}X,\mathcal{Q}Y).$$

Let $E_1, ..., E_n$ be an orthonormal basis for \mathcal{D}_p of signature $\varepsilon_1, ..., \varepsilon_n$, then

$$\tilde{\Pi} = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \tilde{H}(E_i, E_i)$$

is the mean curvature vector field of (\mathcal{D}, g) with respect to $\tilde{\nabla}$ and

$$\Pi = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i H(E_i, E_i)$$

is the mean curvature of (\mathcal{D}, g) with respect to ∇ . We obtain from (8)

(13)
$$= \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \{ \tilde{H}(E_i, E_i) - g(E_i, E_i) \mathcal{Q}W \}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \{ \tilde{H}(E_i, E_i) \} - \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i g(E_i, E_i) \mathcal{Q}W \}$$
$$= \tilde{\Pi} - \mathcal{Q}W.$$

We can state the following. The mean curvature of (\mathcal{D}, g) with respect to $\tilde{\nabla}$ concides with that of (\mathcal{D}, g) with respect to ∇ , if a vector W lies in \mathcal{D} .

If \hat{H} vanishes, then (\mathcal{D}, g) is totally geodesic with respect to $\hat{\nabla}$, and if $\hat{H}(\mathcal{P}X, \mathcal{P}Y) = g(\mathcal{P}X, \mathcal{P}Y)\hat{\Pi}$, then (\mathcal{D}, g) is totally umblical with respect to $\tilde{\nabla}$. Similarly, If H vanishes, then (\mathcal{D}, g) is totally geodesic with respect to ∇ , and if $H(\mathcal{P}X, \mathcal{P}Y) = g(\mathcal{P}X, \mathcal{P}Y)\Pi$, then (\mathcal{D}, g) is totally umblical with respect to ∇ .

From (8) and (12), we have the following Proposition: The semi-symmetric distribution (\mathcal{D}, g) is totally umblical with respect to $\tilde{\nabla}$ if and only if it is totally umblical with respect to the semi-symmetric metric connection ∇ . If $\tilde{\Pi} = 0$ (*resp*. $\Pi = 0$), then (\mathcal{D}, g) is called minimal with respect to $\tilde{\nabla}$ (*resp*. ∇) from equation (12) we have the following result:

THEOREM 2.1. (\mathcal{D}, g) is minimal with respect to the semi-symmetric metric connection ∇ if and only if it is minimal with respect to the Levi-Civita connection, when a vector field W lies in \mathcal{D} .

A linear connection $\breve{\nabla}$ on a semi-Riemannian manifold (M, g) defined by

(14)
$$\check{\nabla}_X Y = \check{\nabla}_X Y + \omega(Y)X$$

is a semi-symmetric non-metric connection, where $\tilde{\nabla}$ is the Levi-Civita connection of (M, g) and ω is a 1-form.

(15)

$$a) \ \breve{H}(X, \mathcal{P}Y) = \mathcal{Q}\breve{\nabla}_X \mathcal{P}Y, \ b) \ \breve{H}^{\perp}(X, \mathcal{Q}Y) = \mathcal{P}\breve{\nabla}_X \mathcal{Q}Y.$$

 \check{H} and \check{H}^{\perp} are the second fundamental forms of \mathcal{D} and \mathcal{D}^{\perp} respectively. By (14) and (15)

(16)
$$\check{H}(X,\mathcal{P}Y) = \tilde{H}(X,\mathcal{P}Y) + \omega(\mathcal{P}Y)\mathcal{Q}X,$$

(17)
$$\check{H}^{\perp}(X, QY) = \tilde{H}^{\perp}(X, QY) + \omega(QY)\mathcal{P}X.$$

Thus we obtain that

(18) a)
$$\check{H}(\mathcal{P}X, \mathcal{P}Y) = \tilde{H}(\mathcal{P}X, \mathcal{P}Y)$$
 b) $\check{H}^{\perp}(\mathcal{Q}X, \mathcal{Q}Y) = \tilde{H}^{\perp}(\mathcal{Q}X, \mathcal{Q}Y).$

(19)
$$\breve{\Pi} = \frac{1}{n} \Sigma_{i=1}^{n} \varepsilon_{i} \breve{H}(E_{i}, E_{i})$$

is the mean curvature of (\mathcal{D}, g) with respect to the semi-symmetric non-metric connection $\check{\nabla}$, where $E_1, ..., E_n$ is an orthonormal basis for \mathcal{D}_p of signature $\varepsilon_1, ..., \varepsilon_n$. Hence by 16 we may state the following results.

THEOREM 2.2. The mean curvature of (\mathcal{D}, g) with respect to $\tilde{\nabla}$ concides with that of (\mathcal{D}, g) with respect to the semi-symmetric non-metric connection $\breve{\nabla}$. If $\breve{\Pi} = 0$, then (\mathcal{D}, g) is called minimal with respect to $\breve{\nabla}$. (\mathcal{D}, g) is minimal with respect to $\breve{\nabla}$ if and only if it is minimal with respect to $\breve{\nabla}$.

If \check{H} vanishes, then (\mathcal{D}, g) is totally geodesic with respect to $\check{\nabla}$ and if $\check{H}(\mathcal{P}X, \mathcal{P}Y) = g(\mathcal{P}X, \mathcal{P}Y)\check{\Pi}$, then (\mathcal{D}, g) is said to be totally umblical with respect to $\check{\nabla}$. The next Theorem follows directly from Theorem 2.2.

THEOREM 2.3. The semi-Riemannian distribution (\mathcal{D}, g) is totally geodesic (totally umblical) with respect to $\tilde{\nabla}$ if and only if it is totally geodesic (totally umblical) with respect to $\tilde{\nabla}$.

References

- 1. A. Bejancu, H R. Farran, Foliation and Geometric structures, Springer, Berlin, 2005.
- M. C. Chaki, A. Konar, On a type of semi-symmetric connection on a Riemannian manifold, J. Pure Math., Calcutta University., (1981), 77-80.
- A. Fridmann, J. A. Schouten, Über die Geometrie der halbsymmeMatrischen Übertragungen, Math. Z., (21) (1924), 211-223.
- 4. B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, London, 1983.
- S. Sharfuddin, S.I. Husain, Semi-symmetric metric connections in almost contact manifolds, *Tensor N. S.*, (30) (1976), 133-139.
- K. Yano, On semi-symmetric connection, Revue Roumaine de Math. Pure et Appliques., (15) (1970), 1570-1586.