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1. Introduction
Finsler geometry is just Riemannian geometry without the quadratic restriction on

its metrics [1]. For a Finsler metric F = F (x, y), its geodesics curves are given by the
system of di昀昀erential equations c̈i + 2Gi(c, ċ) = 0, where the local functions Gi = Gi(x, y)
are called the spray coe昀케cients. A Finsler metric is called a Berwald metric if Gi are
quadratic in y ∈ TxM for any x ∈ M .

The special Finsler metrics we are going to investigate are called Finsler warped prod-
uct metrics which 昀椀rst introduced by Chen-Shen-Zhao and Kozma-Peter-Varga [2,4]. By
defnition, a Finsler warped product metric F on the product manifold M := I× M̆ where
I is an interval of R and M̆ is an (n−1)-dimensional manifold equipped with a Riemannian
metric ᾰ can be expressed in the following form:

(1) F (u, v) := ᾰ(ŭ, v̆)φ
(

u1,
v1

ᾰ(ŭ, v̆)

)

,

where u = (u1, ŭ), v = v1 ∂
∂u1 + v̆ and φ is a suitable function de昀椀ned on a domain of

R
2. This class of Finsler metrics concludes spherically symmetric Finsler metrics [2].

In [3], Gabrani-Rezaei-Sevim characterized the Finsler warped product metrics of isotropic
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Berwald curvature. Moreover, they studied the unicorn problem for the class of Finsler
metrics. Troughout this paper, our index conventions are as follows:

1 ≤ A ≤ B ≤ . . . ≤ n, 2 ≤ i ≤ j ≤ . . . ≤ n.

We prove the following theorem:

Theorem 1.1. Let F = ᾰφ(r, s), r = u1, s = v1

ᾰ
be a warped product metric. Then F

is locally projectively 昀氀at if and only if ᾰ has constant sectional curvature κ ( ᾰ is locally
projectively 昀氀at) and φ satis昀椀es

(φ− sφs)r = 2[−η +
2η

′

− κ

4η
s2]φss ,(2)

where η = η(r) is a di昀昀erential function.
Let η(r) be a function such that the integrals

∫

κ− 2η
′

2η
dr,

∫

2ηe
−

∫ κ−2η
′

2η
dr
dr

are well de昀椀ned for r ∈ R. Then the general solution of (2) for s > 0 is [5]

φ(r, s) = sh− s

∫ s

s0

σ−2ζ
[

e
−

∫ κ−2η
′

2η
dr
σ2 +

∫

2ηe
−

∫ κ−2η
′

2η
dr
dr
]

dσ,(3)

where s ∈ (0, s] and h = h(r) and ζ = ζ(r, σ) are arbitrary di昀昀erentiable real functions.

The following result gives a characterization of Douglas Finsler warped product metrics
to be Einstein in the case of two-dimensional Riemannian manifold (M̆, ᾰ).

Theorem 1.2. Let F = ᾰφ(r, s), r = u1, s = v1

ᾰ
be a Douglas warped product metric

on an n-dimensional manifold M := I × M̆ . Then F has isotropic Ricci curvature

Ric = (n− 1)K(u)F 2

if and only if ᾰ has constant Ricci curvature (n− 2)c,K(u) = K(r) and

(n− 1)
{

Ψ2 − [sΨr − 2(ξs2 + η)Ψs] + c
}

+ 2(2ηξ + η
′

)− c = (n− 1)Kφ2,(4)

where Ψ = sφr

2φ − φs

φ
[ξ(r)s2+η(r)] and ξ = ξ(r) and η = η(r) are two di昀昀erential functions.

The following result gives a characterization of locally projectively 昀氀at Finsler warped
product metrics to be Einstein in the case of two-dimensional Riemannian manifold (M̆, ᾰ).

Theorem 1.3. Let F = ᾰφ(r, s), r = u1, s = v1

ᾰ
be a locally projectively 昀氀at warped

product metric on an n-dimensional manifold M := I × M̆ , where ᾰ is Ricci 昀氀at, c = 0.
Then F has isotropic Ricci curvature

Ric = (n− 1)K(u)F 2

if and only if the function φ satis昀椀es the following PDE:

Ψ2 − sΨr +
2η2 − η

′

s2

η
Ψs = Kφ2,(5)

where Ψ = sφr

2φ − φs

φ
[2η

2
−η

′

s2

2η ] and η = η(r) is a di昀昀erential functions.
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2. Preliminaries
Let F be a Finsler metric on an n-dimensional manifold M and GA be the geodesic

coe昀케cients of F , which are de昀椀ned by

GA :=
1

4
gAB{[F 2]uCvBv

C − [F 2]uB},

where gAB(u, v) =
[

1
2F

2
]

vAvB
and (gAB) = (gAB)

−1.

Lemma 2.1. The spray coe昀케cients GA of a Finsler warped product metric F = ᾰφ(r, s)
are given by [2]

G1 = Φᾰ2, Gi = Ği +Ψᾰ2 l̆i,(6)

where l̆i = vi

ᾰ
and











Φ = s2(ωrωss−ωsωrs)−2ω(ωr−sωrs)
2(2ωωss−ω2

s)
,

Ψ = s(ωrωss−ωsωrs)+ωsωr

2(2ωωss−ω2
s)

,

(7)

where ω = φ2. Φ and Ψ can be rewritten as follows:
Φ = sΨ+A,(8)

Ψ =
sφr

2φ
−

φs

φ
A,(9)

where

A :=
sφrs − φr

2φss

.(10)

Moreover,
D = DA

BCDdx
B ⊗ dxC ⊗ dxD

is a tensor on TM \ {0} which is called the Douglas tensor, where

DA
BCD : =

∂3

∂vB∂vC∂vD

(

GA −
1

n+ 1

∂GC

∂vC
vA

)

.(11)

A Finsler metric F is called Douglas metric if D = 0. For a Berwald metrics, the spray
coe昀케cients Gi are quadratic in y. It follows that D = 0, (11). The Berwald metrics are
Douglas metric. H. Liu and X. Mo have proved that a warped product Finsler metric
F = ᾰφ(r, s) is of Douglas type if and only if

Φ− sΨ = ξ(r)s2 + η(r),

where ξ = ξ(r) and η = η(r) are two di昀昀erential functions, [5].
In order to prove the main theorems, we need the following lemmas:

Lemma 2.2. A Finsler metric F on a manifold M (dim M > 2) is locally projectively
昀氀at if and only if D = 0 and W = 0.

Lemma 2.3. [6] Let F = ᾰφ(r, s), r = u1, s = v1

ᾰ
be a warped product metric. Then F

is of scalar 昀氀ag curvature if and only if ᾰ has constant sectional curvature κ and
λ− ν = κ,(12)

where
λ = (2Φr − sΦrs) + (2ΦΦss − Φ2

s) + 2(Φs − sΦss)Ψ− (2Φ− sΦs)Φs,(13)
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µ = Ψ2 − 2sΨΨs − sΨr + 2ΦΨs,(14)
τ = 2Ψr − sΨrs + s(Ψ2

s − 2ΨΨss) + 2ΨssΦ−ΨsΦs,(15)
ν = sτ + µ.(16)

In [2], Chen-Shen-Zhao obtained a formula for the Ricci curvature Ric of a Finsler
warped product metric, and it is given at below.

Lemma 2.4. [2] For a Finsler warped product metric F = ᾰφ(r, s), the Ricci curvature
Ric is given by

Ric = R̆ic+ ᾰ2[λ+ (n− 1)µ− ν],(17)
where

λ = (2Φr − sΦrs) + (2ΦΦss − Φ2
s) + 2(Φs − sΦss)Ψ− (2Φ− sΦs)Φs,(18)

µ = Ψ2 − 2sΨΨs − sΨr + 2ΦΨs,(19)
τ = 2Ψr − sΨrs + s(Ψ2

s − 2ΨΨss) + 2ΨssΦ−ΨsΦs,(20)
ν = sτ + µ.(21)

Lemma 2.5. [6] Let F = ᾰφ(r, s), r = u1, s = v1

ᾰ
be a warped product metric on an

n-dimensional manifold M := I × M̆ . Then F has isotropic Ricci curvature
Ric = (n− 1)K(u)F 2

if and only if ᾰ has constant Ricci curvature (n− 2)c,K(u) = K(r) and
(n− 1)[K(r)φ2 − µ] + ν − λ = (n− 2)c.(22)

3. Proof of Main Theorems
Proof of the Theorem 1.1
We will prove this theorem by using Lemma 2.2. Let F = ᾰφ(r, s), r = u1, s = v1

ᾰ
be a

warped product metric on an n-dimensional manifold M := I × M̆ . F is of Douglas type
if and only if

Φ− sΨ = ξ(r)s2 + η(r),(23)
where ξ = ξ(r) and η = η(r) are two di昀昀erential functions, [5]. By (8), it is easy to see
that (23) is equivalent to

A = ξ(r)s2 + η(r).(24)
According to Matsumoto’s result, F is of vanishing Weyl curvature if and only if it is

of scalar 昀氀ag curvature. By (8), one can see that (12) is equivalent to
2AAss − sArs −A2

s + 2Ar − κ = 0.(25)
By substituting (24) into (25), we get

4 ξη + 2η
′

− κ = 0.(26)
By (10), (24), and (26), we obtain (2). This completes the proof. □

Proof of the Theorem 1.2 By Lemma 2.5 and (24), we get the proof of Theorem
1.2. □

Proof of the Theorem 1.3 By Theorem 1.1 and Lemma 2.5, we get the proof of
Theorem 1.3. □
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