

On generalized symmetric Finsler spaces with Matsumoto metrics

Milad Zeinali Laki^{1,*}, Dariush Latifi ²

¹Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran ²Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran

ABSTRACT. In this paper, we study generalized symmetric (α, β) -spaces. We prove that generalized symmetric (α, β) -spaces with Matsumoto metric are Riemannian. **Keywords:** (α, β) -metric, generalized symmetric space, Matsumoto metric **AMS Mathematics Subject Classification [2020]:** 18A32, 18F20, 05C65

1. Introduction

The notion of symmetric spaces is due to Cartan. Later, Kowalski [3] defined generalized symmetric spaces or regular s-spaces following the introduction of s-manifolds in [?]. Generalized symmetric Finsler spaces are a natural generalization of generalized symmetric spaces and they keep many of their properties [2, 6]. Let (M, F) be a connected Finsler manifold. A symmetry at $x \in M$ is an isometry of (M, F) for which x is an isolated fixed point. A s-structure on (M, F) is a family $\{s_x\}_{x \in M}$ such that s_x is a symmetry at $x \in M$, for each $x \in M$. An s-structure is called regular if for any two points $x, y \in M$

$$s_x \circ s_y = s_z \circ s_x, \quad z = s_x(y).$$

An s-structure $\{s_x\}_{x \in M}$ is called of order k if $(s_x)^k = id_M$ for all $x \in M$ and k is the minimal number with this property. It is well known that if (M, F) admits an s-structure, then it always admits an s-structure of finite order. In particular if (M, F) admits an s-structure of order two then it is a usual symmetric Finsler space.

An (α, β) -metric is a Finsler metric of the form $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ where $\alpha = \sqrt{\tilde{a}_{ij}(x)y^i y^j}$ is induced by a Riemannian metric $\tilde{a} = \tilde{a}_{ij} dx^i \otimes dx^j$ on a connected smooth n-dimensional manifold M and $\beta = b_i(x)y^i$ is a 1-form on M. Some important classes of (α, β) -metrics are Randers metric $F = \alpha + \beta$, Matsumoto metric $F = \frac{\alpha^2}{(\alpha - \beta)}$, infinite series metric $F = \frac{\beta^2}{\beta - \alpha}$ and exponential metric $F = \alpha \exp(\frac{\beta}{\alpha})$

In this paper, we study generalized symmetric Finsler spaces with Matsumoto metric.

^{*}Speaker. Email address: miladzeinali@gmail.com,

2. Preliminaries

Let M be a smooth n-dimensional C^{∞} manifold and TM be its tangent bundle. A Finsler metric on a manifold M is a non-negative function $F : TM \longrightarrow R$ with the following properties [1]:

- (1) F is smooth on the slit tangent bundle $TM^0 := TM \setminus \{0\}$.
- (2) $F(x, \lambda y) = \lambda F(x, y)$ for any $x \in M, y \in T_x M$ and $\lambda > 0$.
- (3) The following bilinear symmetric form $g_y: T_x M \times T_x M \longrightarrow R$ is positive definite

$$g_y(u,v) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} F^2(x, y + su + tv)|_{s=t=0}.$$

DEFINITION 2.1. Let $\alpha = \sqrt{\tilde{a}_{ij}(x)y^iy^j}$ be a norm iduced ba a Riemannian metric \tilde{a} and $\beta(x,y) = b_i(x)y^i$ be a 1-form on an *n*-dimensional manifold *M*. Let

(2.1)
$$\|\beta(x)\|_{\alpha} := \sqrt{\tilde{a}^{ij}(x)b_i(x)b_j(x)}.$$

Now, let the function F is defined as follows

(2.2)
$$F := \alpha \phi(s) \quad , \quad s = \frac{\beta}{\alpha},$$

where $\phi = \phi(s)$ is a positive C^{∞} function on $(-b_0, b_0)$ satisfying

(2.3)
$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0 \quad , \quad |s| \le b < b_0.$$

Then F is a Finsler metric if $\|\beta(x)\|_{\alpha} < b_0$ for any $x \in M$. A Finsler metric in the form (2.2) is called an (α, β) -metric.

A Finsler space having the Finsler function:

(2.4)
$$F(x,y) = \frac{\alpha^2(x,y)}{\alpha(x,y) - \beta(x,y)}$$

is called a Matsumoto space.

The Riemannian metric \tilde{a} induces an inner product on any cotangent space T_x^*M such that $\langle dx^i(x), dx^j(x) \rangle = \tilde{a}^{ij}(x)$. The induced inner product on T_x^*M induces a linear isomorphism between T_x^*M and T_xM . Then the 1-form β corresponds to a vector field \tilde{X} on M such that

(2.5)
$$\tilde{a}(y,\tilde{X}(x)) = \beta(x,y).$$

Also we have $\|\beta(x)\|_{\alpha} = \|\tilde{X}(x)\|_{\alpha}$. Therefore we can write (α, β) -metrics as follows:

(2.6)
$$F(x,y) = \alpha(x,y)\phi(\frac{\tilde{a}(X(x),y)}{\alpha(x,y)}),$$

where for any $x \in M$, $\sqrt{\tilde{a}(\tilde{X}(x), \tilde{X}(x))} = \|\tilde{X}(x)\|_{\alpha} < b_0$. Symmetric Finsler spaces form a natural extension to the symmetric spaces of Cartan. A symmetric Finsler spaces is a Finsler space (M, F) such that for all $p \in M$ there exist an involutive isometry $s_p \in M$ such that p is an isolated fixed point of s_p [4]. Generalized symmetric Finsler spaces were introduced as generalization of generalized symmetric spaces [2]. A Finsler space (M, F)is said to be symmetric space if for any point $p \in M$ there exist an involutive isometry s_p of (M, F) such that p is an isolated fixed point of (M, F). Let (M, F) be a connected Finsler space. An isometry s_x of (M, F) for which $x \in M$ is an isolated fixed point will be called a symmetry of M at x. An *s*-structure on (M, F) is a family $\{s_x | x \in M\}$ of symmetries of (M, F). The corresponding tensor field *S* of type (1,1) defined by $S_x = (s_x)_x$ for each $x \in M$ is called the symmetry tensor field of *s*-structure [2,3].

DEFINITION 2.2. An *s*-structure $\{s_x | x \in M\}$ on a Finsler space (M, F) is said to be regular if it satisfies the rule

$$s_x \circ s_y = s_z \circ s_x, \quad z = s_x(y)$$

for every two points $x, y \in M$.

3. Generalized symmetric (α, β) spaces

LEMMA 3.1. Let (M, F) be a generalized symmetric Matsumoto space with F defined by the Riemannian metric \tilde{a} and the vector field X. Then the regular s-structure $\{s_x\}$ of (M, F) is also a regular s-structure of the Riemannian manifold (M, \tilde{a}) .

Proof: Let s_x be a symmetry of (M, F) at x and $p \in M$. Then for any $Y \in T_pM$ we have

$$F(p,Y) = F(s_x(p), ds_x(Y))$$

$$\frac{\tilde{a}(Y,Y)}{\sqrt{\tilde{a}(Y,Y)} - \tilde{a}(X_p,Y)} = \frac{\tilde{a}(ds_xY, ds_xY)}{\sqrt{\tilde{a}(ds_xY, ds_xY)} - \tilde{a}(X_{s_x(p)}, ds_xY)}.$$

Applying the above equation to -Y, we get

$$\frac{\tilde{a}(Y,Y)}{\sqrt{\tilde{a}(Y,Y)} + \tilde{a}(X_p,Y)} = \frac{\tilde{a}(ds_xY,ds_xY)}{\sqrt{\tilde{a}(ds_xY,ds_xY)} + \tilde{a}(X_{s_x(p)},ds_xY)}$$

Combining the above two equations, we get

$$\tilde{a}(Y,Y) = \tilde{a}(ds_x Y, ds_x Y)
\tilde{a}(X_p, Y) = \tilde{a}(X_{s_x(p)}, ds_x Y).$$

Thus s_x is a symmetry with respect to the Riemannian metric $\tilde{a}.\Box$

LEMMA 3.2. Let (M, \tilde{a}) be a generalized symmetric Riemannian space. Also suppose that F is a Matsumoto metric introduced by \tilde{a} and a vector field X. Then the regular s-structure $\{s_x\}$ of (M, \tilde{a}) is also a regular s-structure of (M, F) if and only if X is s_x -invariant for all $x \in M$.

Proof: Let X be s_x -invariant. Therefore for any $p \in M$, we have $X_{s_x(p)} = ds_x X_p$. Then for any $y \in T_p M$ we have

$$F(s_x(p), ds_x y_p) = \frac{\tilde{a}(ds_x y_p, ds_x y_p)}{\sqrt{\tilde{a}(ds_x y, ds_x y)} - \tilde{a}(X_{s_x(p)}, ds_x y)}$$
$$= \frac{\tilde{a}(y, y)}{\sqrt{\tilde{a}(y, y)} - \tilde{a}(ds_x X_p, ds_x y)}$$
$$= \frac{\tilde{a}(y, y)}{\sqrt{\tilde{a}(y, y)} - \tilde{a}(X_p, y)}.$$
$$= F(p, y)$$

Conversely, let s_x be a symmetry of (M, F) at x. Then for any $p \in M$ and $y \in T_pM$ we have

$$F(p,y) = F(s_x(p), ds_x y)$$

$$\frac{\tilde{a}(y,y)}{\sqrt{\tilde{a}(y,y)} - \tilde{a}(X_p,y)} = \frac{\tilde{a}(ds_x y_p, ds_x y_p)}{\sqrt{\tilde{a}(ds_x y, ds_x y)} - \tilde{a}(X_{s_x(p)}, ds_x y)}$$

So we have

$$\tilde{a}(ds_x X_p - X_{s_x(p)}, ds_x y_p) = 0.$$

Therefore $ds_x X_p = X_{s_x(p)}.\Box$

THEOREM 3.3. A generalized symmetric Matsumoto space must be Riemannian.

Proof: Let (M, F) be a generalized symmetric Matsumoto space with F defined by the Riemannian metric \tilde{a} and the vector field X, and let $\{s_x\}$ be the regular s-structure of (M, F). Let s_x be a symmetry of (M, F). Then by lemma 3.1, s_x is also a symmetry of (M, \tilde{a}) . Thus we have

$$F(x, ds_x(y)) = \frac{\tilde{a}(ds_x y, ds_x y)}{\sqrt{\tilde{a}(ds_x y, ds_x y)} - \tilde{a}(X_x, ds_x y)}$$
$$= \frac{\tilde{a}(y, y)}{\sqrt{\tilde{a}(y, y)} - \tilde{a}(X_x, ds_x y)}$$
$$= F(x, y).$$

Therefore $\tilde{a}(X_x, ds_x y) = \tilde{a}(X_x, y), \forall y \in T_x M$. Since x is an isolated fixed point of the symmetry s_x , the tangent map $S_x = (ds_x)_x$ is an orthogonal transformation of $T_x M$ having no nonzero fixed vectors. So we have $\tilde{a}(X_x, (S - id)_x(y)) = 0, \forall y \in T_x M$. Since $(S - id)_x$ is an invertible linear transformation, we have $X_x = 0, \forall x \in M$. Hence F is Riemannian. \Box

References

- 1. D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry, Springer-Verlag, NEW-YORK (2000).
- 2. P. Habibi, A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata, 149, (2010), 121-127.
- 3. O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, Springer Verlag, (1980).
- D. Latifi and A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57, (2006) 357-366. Erratum: Rep. Math. Phys. 60, (2007), 347.
- A. J. Ledger, M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry, 2, (1968), 451-459.
- 6. L. Zhang, S. Deng, On generalized symmetric Finsler spaces, Balkan J. Geom. Appl., 21, (2016), 113-123.