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Abstract

In this paper we determine the structures of all the linear operators T : Mm,n → Mm,n

which (Strongly) preserve SCH-Hadamard majorization, where Mm,n is the set of all the
m-by-n real matrices.
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1 Introduction
For X,Y ∈ Mm,n, the Hadamard product (entrywise product) of X = [xij ] and Y = [yij ], is
denoted by X ◦ Y and is defined by X ◦ Y = [xijyij ]. A matrix C in Mm,n with nonnegative
entries is called strictly sub column stochastic if the sum of entries on every column of C is
less than 1. For more details and applications of Hadamard product, the reader can see [1–4].
In this paper, with using the Hadamard product and strictly sub column stochastic matrices,
we introduce a relation on Mm,n which is called strictly sub row Hadamard majorization or in
brief SCH-majorization. Let X,Y ∈ Mm,n. We say that X is SCH-Hadamard majorized by Y
(denoted by X ≺SCH Y ), if there exists a strictly sub column stochastic matrix C ∈ Mm,n such
that X = C ◦ Y .

A linear operator T : Mm,n → Mm,n is said to be a preserver (resp. strongly preserver) of
SCH-Hadamard majorization if T (X) ≺SCH T (Y ) whenever X ≺SCH Y (resp. T (X) ≺SCH

T (Y ) if and only if X ≺SCH Y ). In this paper, we determine the structure all linear operators
on Mm,n that preserve (resp. strongly preserve) SCH-majorization. In the rest of this paper.
{E11, E12, . . . , Emn} is the standard basis of Mm,n. When we use Eij , the positive integers i
and j are either fixed or are understood from the context. The m-by-n matrix J is the matrix
of all ones, Cm,n is the set of all m-by-n column stochastic matrices, and sCm,n is the set of all
m-by-n sub column stochastic matrices.

For A ∈ Mm,n, we say that A is dominated by a (0, 1)-column stochastic matrix if there
exists a (0, 1)-column stochastic matrix C ∈ Mm,n such that A = A ◦C. The set of all matrices
which are dominated by (0, 1)-matrices is denoted by ∆m,n.

In the next proposition we investigate a useful result from [5]. For every m ∈ N, let Nm =
{1, . . . ,m}.
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Proposition 1.1. [5, Theorem 2.6] Let T : Mm,n → Mm,n be a linear operator. The following
conditions are equivalent:

(1) T (Epq) ◦ T (Ers) = 0 for every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with (p, q) ̸= (r, s).

(2) There exist a function f : Nm×Nn → Nm×Nn and a matrix A ∈ Mm,n such that for every
X = [xi,j ] ∈ Mm,n,

T (X) =

 xf(1,1) . . . xf(1,n)
...

...
...

xf(m,1) . . . xf(m,n)

 ◦A, (1)

where xf(i,j) means xpq if f(i, j) = (p, q).

2 Main Results
At the first of this section, we state some properties of preservers of SCH-Hadamard majoriza-
tion on Mm,n. Then we give an example of linear preservers and strong linear preservers of
SCH-Hadamard majorization. Finally, we find the structure of all linear operators on Mm,n

which preserve (strongly) preserve SCH-Hadamard majorization. The next remark is helpful in
the following.

Remark 2.1. The next results hold:

(i) A linear operator X 7→ T (X) on Mm,n, preserves ≺SCH if and only if X 7→ PT (X)Q
preserves ≺SCH , where P ∈ Mm and Q ∈ Mn are arbitrary permutation matrices.

(ii) For A ∈ Mm,n with no zero entries, the linear operator X 7→ T (X) is a linear preserver of
≺SH if and only if the linear operator X 7→ T (X) ◦A is a linear preserver of ≺SH .

(iii) If T : Mm,n → Mm,n is a linear preserver of ≺SCH , then T (Epq) ◦ T (Ers) = 0, for every
1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with (p, q) ̸= (r, s).

The next theorem gives important properties of linear preservers of SCH-Hadamard ma-
jorization on Mm,n.

Theorem 2.2. Let T : Mm,n → Mm,n be a linear operator. If T preserves SCH-Hadamard
majorization, then the following conditions hold:

(1) For every 1 ≤ p ≤ m and 1 ≤ q ≤ n, T (Epq) ∈ ∆m,n.

(2) For every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with p ̸= r, T (Epq) and T (Ers) do not simultane-
ously have a nonzero entry in any column.

By using Proposition 1.1, we can prove the following theorem.

Theorem 2.3. Let T : Mm,n → Mm,n be a linear operator. If T preserves SCH-Hadamard
majorization, then the following conditions hold:

(1) There exist a function f : Nm×Nn → Nm×Nn and a matrix A ∈ Mm,n such that for every
X = [xi,j ] ∈ Mm,n,

T (X) =

 xf(1,1) . . . xf(1,n)
...

...
...

xf(m,1) . . . xf(m,n)

 ◦A, (2)

where xf(i,j) means xpq if f(i, j) = (p, q).
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(2) T (X ◦ Y ) = T (X) ◦ T (Y ) for all X,Y ∈ Mm,n if T (J) is a (0, 1)-matrix.

The following example, is helpful to find the structure of the linear preservers of SCH-
Hadamard majorization.

Example 2.4. Assume that P is an m-by-m permutation matrix, Q is an n-by-n permutation
matrix and A ∈ Mm,n. The linear operator T : Mm,n → Mm,n defined by T (X) = (PXQ) ◦ A
is a preserver of ≺SCH . Also, T strongly preserves ≺SCH if A has no zero entry. But T (X) =
(PXtQ) ◦A is not a preserver of ≺SCH (Xt is the transpose of X).

The following theorem is the key to characterize the linear preservers of SCH-Hadamard
majorization on Mm,n.

Theorem 2.5. Let T : Mm,n → Mm,n be a linear operator. Then T preserves ≺SCH if and
only if T satisfies the following conditions:

(1) T (Ers) ◦ T (Epq) = 0 for every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with (r, s) ̸= (p, q).

(2) For every C ∈ ext(sCm,n) there exists a (0, 1)-matrix Z ∈ Mm,n such that Z ◦ T (J) = 0
and Z + T (C) ∈ ∆m,n.

In the next Theorem we completely determine the structure of the linear operators T :
Mm,n → Mn,m, which preserves SCH-Hadamard majorization.

Theorem 2.6. Let T : Mm,n → Mm,n be a linear operator. Then T preserves ≺SCH if and
only if there exist A ∈ Mm,n and permutation matrices Q1, . . . , Qn ∈ Mm such that

T (X) =


Y t
i1
Q1

Y t
i2
Q2
...

Y t
in
Qn


t

◦ T (J), ∀X ∈ Mm,n, (3)

where Yij are some columnss of X for 1 ⩽ j ⩽ n (not necessarily distinct).

2.1 Strong linear preservers of SCH-Hadamard majorization
In this section, we characterize the linear operators on Mm,n which strongly preserve SCH-
Hadamard majorization. The next lemma shows that every strong linear preserver of ≺SCH on
Mm,n is invertible.

Lemma 2.7. Let T : Mm,n → Mm,n be a linear operator. If T strongly preserves ≺SCH , then
T is invertible.

Proof. Assume that T : Mm,n → Mm,n is a strong linear preserver of SCH-majorization and
T (X) = 0. Then, T (X) ≺SCH 0 and hence X ≺SCH 0. Therefore, X = 0 which implies that T
is invertible.

Lemma 2.8. Let T : Mm,n → Mm,n be a linear operator. If T strongly preserves ≺SCH , then
T (J) has no zero entry.

Proof. Assume that the linear operator T : Mm,n → Mm,n strongly preserves ≺SCH . So by
Theorem 2.3, T has the form 1.1 and by Lemma 2.7, T is invertible. Thus, T (J) has no zero
entry.
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The next proposision, gives necessary and sufficient conditions for a linear operator T on
Mm,n that strongly preserves SCH-Hadamard majorization.

Proposition 2.9. Let T : Mm,n → Mm,n be a linear operator. Then T strongly preserves ≺SCH

if and only if T is invertible and T satisfies the following conditions:

(1) T (Ers) ◦ T (Epq) = 0 for every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with (r, s) ̸= (p, q).

(2) For every C ∈ ext(sCm,n), T (C) has exactly one nonzero entry in each column.

The following theorem characterizes the linear preservers of SCH-Hadamard majorization
on Mm,n.

Theorem 2.10. Let T : Mm,n → Mm,n be a linear operator. Then T strongly preserves ≺SCH

if and only if there exist A ∈ Mm,n with no zero entry and permutation matrices P ∈ Mm and
Q1, . . . , Qn ∈ Mm such that

T (X) = P


Y t
1Q1

Y t
2Q2
...

Y t
nQn


t

◦A, ∀X ∈ Mm,n, (4)

where Y1, . . . , Yn are columns of Y .

3 Conclusion
In this paper by state some useful results, we completely determine the structure of all the linear
operators on Mm,n which preserve (strongly preserve) the SCH-Hadamard majorization.
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