

The structure of the preservers of SCH-Hadamard majorization

Abbas Askarizadeh^{1*}

¹Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract

In this paper we determine the structures of all the linear operators $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ which (Strongly) preserve *SCH*-Hadamard majorization, where $\mathbf{M}_{m,n}$ is the set of all the *m*-by-*n* real matrices.

Keywords: Linear preserver, Strong linear preserver, Strictly sub row Hadamard majorization, Strictly sub row stochastic matrix.

Mathematics Subject Classification [2010]: 15A04, 15A21

1 Introduction

For $X, Y \in \mathbf{M}_{m,n}$, the Hadamard product (entrywise product) of $X = [x_{ij}]$ and $Y = [y_{ij}]$, is denoted by $X \circ Y$ and is defined by $X \circ Y = [x_{ij}y_{ij}]$. A matrix C in $\mathbf{M}_{m,n}$ with nonnegative entries is called strictly sub column stochastic if the sum of entries on every column of C is less than 1. For more details and applications of Hadamard product, the reader can see [1–4]. In this paper, with using the Hadamard product and strictly sub column stochastic matrices, we introduce a relation on $\mathbf{M}_{m,n}$ which is called strictly sub row Hadamard majorization or in brief *SCH*-majorization. Let $X, Y \in \mathbf{M}_{m,n}$. We say that X is *SCH*-Hadamard majorized by Y(denoted by $X \prec_{SCH} Y$), if there exists a strictly sub column stochastic matrix $C \in \mathbf{M}_{m,n}$ such that $X = C \circ Y$.

A linear operator $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ is said to be a preserver (resp. strongly preserver) of SCH-Hadamard majorization if $T(X) \prec_{SCH} T(Y)$ whenever $X \prec_{SCH} Y$ (resp. $T(X) \prec_{SCH} T(Y)$ if and only if $X \prec_{SCH} Y$). In this paper, we determine the structure all linear operators on $\mathbf{M}_{m,n}$ that preserve (resp. strongly preserve) SCH-majorization. In the rest of this paper. $\{E_{11}, E_{12}, \ldots, E_{mn}\}$ is the standard basis of $\mathbf{M}_{m,n}$. When we use E_{ij} , the positive integers *i* and *j* are either fixed or are understood from the context. The *m*-by-*n* matrix **J** is the matrix of all ones, $\mathbf{C}_{m,n}$ is the set of all *m*-by-*n* column stochastic matrices, and $\mathbf{sC}_{m,n}$ is the set of all *m*-by-*n* sub column stochastic matrices.

For $A \in \mathbf{M}_{m,n}$, we say that A is dominated by a (0, 1)-column stochastic matrix if there exists a (0, 1)-column stochastic matrix $C \in \mathbf{M}_{m,n}$ such that $A = A \circ C$. The set of all matrices which are dominated by (0, 1)-matrices is denoted by $\Delta_{m,n}$.

In the next proposition we investigate a useful result from [5]. For every $m \in \mathbb{N}$, let $\mathbb{N}_m = \{1, \ldots, m\}$.

^{*}Speaker. Email address: a.askari@vru.ac.ir

Proposition 1.1. [5, Theorem 2.6] Let $T : M_{m,n} \to M_{m,n}$ be a linear operator. The following conditions are equivalent:

- (1) $T(E_{pq}) \circ T(E_{rs}) = 0$ for every $1 \le p, r \le m$ and $1 \le q, s \le n$ with $(p, q) \ne (r, s)$.
- (2) There exist a function $f : \mathbb{N}_m \times \mathbb{N}_n \to \mathbb{N}_m \times \mathbb{N}_n$ and a matrix $A \in \mathbf{M}_{m,n}$ such that for every $X = [x_{i,j}] \in \mathbf{M}_{m,n}$,

$$T(X) = \begin{pmatrix} x_{f(1,1)} \dots x_{f(1,n)} \\ \vdots & \vdots & \vdots \\ x_{f(m,1)} \dots & x_{f(m,n)} \end{pmatrix} \circ A,$$
(1)

where $x_{f(i,j)}$ means x_{pq} if f(i,j) = (p,q).

2 Main Results

At the first of this section, we state some properties of preservers of SCH-Hadamard majorization on $\mathbf{M}_{m,n}$. Then we give an example of linear preservers and strong linear preservers of SCH-Hadamard majorization. Finally, we find the structure of all linear operators on $\mathbf{M}_{m,n}$ which preserve (strongly) preserve SCH-Hadamard majorization. The next remark is helpful in the following.

Remark 2.1. The next results hold:

- (i) A linear operator $X \mapsto T(X)$ on $\mathbf{M}_{m,n}$, preserves \prec_{SCH} if and only if $X \mapsto PT(X)Q$ preserves \prec_{SCH} , where $P \in \mathbf{M}_m$ and $Q \in \mathbf{M}_n$ are arbitrary permutation matrices.
- (ii) For $A \in \mathbf{M}_{m,n}$ with no zero entries, the linear operator $X \mapsto T(X)$ is a linear preserver of \prec_{SH} if and only if the linear operator $X \mapsto T(X) \circ A$ is a linear preserver of \prec_{SH} .
- (iii) If $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ is a linear preserver of \prec_{SCH} , then $T(E_{pq}) \circ T(E_{rs}) = 0$, for every $1 \le p, r \le m$ and $1 \le q, s \le n$ with $(p,q) \ne (r,s)$.

The next theorem gives important properties of linear preservers of SCH-Hadamard majorization on $\mathbf{M}_{m,n}$.

Theorem 2.2. Let $T : M_{m,n} \to M_{m,n}$ be a linear operator. If T preserves SCH-Hadamard majorization, then the following conditions hold:

- (1) For every $1 \le p \le m$ and $1 \le q \le n$, $T(E_{pq}) \in \Delta_{m,n}$.
- (2) For every $1 \le p, r \le m$ and $1 \le q, s \le n$ with $p \ne r$, $T(E_{pq})$ and $T(E_{rs})$ do not simultaneously have a nonzero entry in any column.

By using Proposition 1.1, we can prove the following theorem.

Theorem 2.3. Let $T : M_{m,n} \to M_{m,n}$ be a linear operator. If T preserves SCH-Hadamard majorization, then the following conditions hold:

(1) There exist a function $f : \mathbb{N}_m \times \mathbb{N}_n \to \mathbb{N}_m \times \mathbb{N}_n$ and a matrix $A \in \mathbf{M}_{m,n}$ such that for every $X = [x_{i,j}] \in \mathbf{M}_{m,n}$,

$$T(X) = \begin{pmatrix} x_{f(1,1)} \dots x_{f(1,n)} \\ \vdots & \vdots & \vdots \\ x_{f(m,1)} \dots & x_{f(m,n)} \end{pmatrix} \circ A,$$
(2)

where $x_{f(i,j)}$ means x_{pq} if f(i,j) = (p,q).

(2) $T(X \circ Y) = T(X) \circ T(Y)$ for all $X, Y \in M_{m,n}$ if T(J) is a (0,1)-matrix.

The following example, is helpful to find the structure of the linear preservers of SCH-Hadamard majorization.

Example 2.4. Assume that P is an m-by-m permutation matrix, Q is an n-by-n permutation matrix and $A \in \mathbf{M}_{m,n}$. The linear operator $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ defined by $T(X) = (PXQ) \circ A$ is a preserver of \prec_{SCH} . Also, T strongly preserves \prec_{SCH} if A has no zero entry. But $T(X) = (PX^tQ) \circ A$ is not a preserver of $\prec_{SCH} (X^t)$ is the transpose of X.

The following theorem is the key to characterize the linear preservers of SCH-Hadamard majorization on $\mathbf{M}_{m,n}$.

Theorem 2.5. Let $T : M_{m,n} \to M_{m,n}$ be a linear operator. Then T preserves \prec_{SCH} if and only if T satisfies the following conditions:

- (1) $T(E_{rs}) \circ T(E_{pq}) = 0$ for every $1 \le p, r \le m$ and $1 \le q, s \le n$ with $(r, s) \ne (p, q)$.
- (2) For every $C \in \text{ext}(sC_{m,n})$ there exists a (0,1)-matrix $Z \in M_{m,n}$ such that $Z \circ T(J) = 0$ and $Z + T(C) \in \Delta_{m,n}$.

In the next Theorem we completely determine the structure of the linear operators T: $\mathbf{M}_{m,n} \to \mathbf{M}_{n,m}$, which preserves *SCH*-Hadamard majorization.

Theorem 2.6. Let $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ be a linear operator. Then T preserves \prec_{SCH} if and only if there exist $A \in \mathbf{M}_{m,n}$ and permutation matrices $Q_1, \ldots, Q_n \in \mathbf{M}_m$ such that

$$T(X) = \begin{pmatrix} Y_{i_1}^t Q_1 \\ Y_{i_2}^t Q_2 \\ \vdots \\ Y_{i_n}^t Q_n \end{pmatrix}^t \circ T(\mathbf{J}), \quad \forall X \in \mathbf{M}_{m,n},$$
(3)

where Y_{i_j} are some columnss of X for $1 \leq j \leq n$ (not necessarily distinct).

2.1 Strong linear preservers of SCH-Hadamard majorization

In this section, we characterize the linear operators on $\mathbf{M}_{m,n}$ which strongly preserve *SCH*-Hadamard majorization. The next lemma shows that every strong linear preserver of \prec_{SCH} on $\mathbf{M}_{m,n}$ is invertible.

Lemma 2.7. Let $T : M_{m,n} \to M_{m,n}$ be a linear operator. If T strongly preserves \prec_{SCH} , then T is invertible.

Proof. Assume that $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ is a strong linear preserver of *SCH*-majorization and T(X) = 0. Then, $T(X) \prec_{SCH} 0$ and hence $X \prec_{SCH} 0$. Therefore, X = 0 which implies that T is invertible.

Lemma 2.8. Let $T : M_{m,n} \to M_{m,n}$ be a linear operator. If T strongly preserves \prec_{SCH} , then T(J) has no zero entry.

Proof. Assume that the linear operator $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ strongly preserves \prec_{SCH} . So by Theorem 2.3, T has the form 1.1 and by Lemma 2.7, T is invertible. Thus, $T(\mathbf{J})$ has no zero entry.

The next proposition, gives necessary and sufficient conditions for a linear operator T on $\mathbf{M}_{m,n}$ that strongly preserves *SCH*-Hadamard majorization.

Proposition 2.9. Let $T : M_{m,n} \to M_{m,n}$ be a linear operator. Then T strongly preserves \prec_{SCH} if and only if T is invertible and T satisfies the following conditions:

(1) $T(E_{rs}) \circ T(E_{pq}) = 0$ for every $1 \le p, r \le m$ and $1 \le q, s \le n$ with $(r, s) \ne (p, q)$.

(2) For every $C \in \text{ext}(sC_{m,n})$, T(C) has exactly one nonzero entry in each column.

The following theorem characterizes the linear preservers of SCH-Hadamard majorization on $\mathbf{M}_{m,n}$.

Theorem 2.10. Let $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ be a linear operator. Then T strongly preserves \prec_{SCH} if and only if there exist $A \in \mathbf{M}_{m,n}$ with no zero entry and permutation matrices $P \in \mathbf{M}_m$ and $Q_1, \ldots, Q_n \in \mathbf{M}_m$ such that

$$T(X) = P \begin{pmatrix} Y_1^t Q_1 \\ Y_2^t Q_2 \\ \vdots \\ Y_n^t Q_n \end{pmatrix}^t \circ A, \quad \forall X \in \mathbf{M}_{m,n},$$
(4)

where Y_1, \ldots, Y_n are columns of Y.

3 Conclusion

In this paper by state some useful results, we completely determine the structure of all the linear operators on $\mathbf{M}_{m,n}$ which preserve (strongly preserve) the *SCH*-Hadamard majorization.

References

- D. Chandler, The norm of the Schur product operation, Numerische Mathematik, 4(1) (1962) 343-344.
- [2] B. Cyganek, Obeject detection and recognition in digital images (theory and practice), A John Wiley and Sons, 2013.
- [3] P. H. George, Hadamard product and multivariate statistical analysis, Linear Algebra Appl., 6 (1973) 217-240.
- [4] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 2012.
- [5] S. M. Motlaghian, A. Armandnejad and F. J. Hall, Linear preservers of Hadamard majorization, Electronic Journal of Linear Algebra, 31 (2016) 593-609.