NUMERICAL RANGES OF EVEN-ORDER TENSOR
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Abstract. In this paper, the numerical range of an even-order tensor is defined using the norm
of its square matrix unfolding. The basic properties of the numerical range of a matrix, such as
compactness and convexity, are proved to hold for the numerical range of an even-order tensor.
Also, we introduce normal tensors based on the contraction product. According to the Tucker de-
composition, we get the numerical range of a normal tensor. Next, we introduce the singular-value
decomposition (SVD) of an even-order tensor. Using this decomposition, we obtain the numerical
range of such a tensor.

Mathematics Subject Classification: 15A69; 15A60

Key words and phrases: Normal tensors . Numerical range . Toeplitz tensor . Unfolding
operators . SVD decomposition . Even-order tensor.

1. INTRODUCTION

For a k'"-order I-dimensional tensor A (or A € C®D) the numerical range is defined by

Wi A) = ({reC:u— X< &A=}

AeC
where J € C%1 is the identity tensor, ||| . ||| is a consistent tensor norm on C*) and ¢ is a
scalar [2]. One fundamental fact about the numerical range is that W) (A) is a convex subset

of C that contains the spectrum of A, for every A € C*Y. For high-dimensional problems,

the data have an inherent tensor structure, and the difference slices of the data may have some
relationships. If we process brain MRI images slice-by-slice, we may lose some information of
the tensor structure of the images. Thus, it is necessary to study the tensor eigenvalue problem.
The eigenvalues of high-order tensors are used in different fields. For example, medical resonance
imaging, diffusion tensor imaging, high-order Markov chains and data mining, positive definiteness
of even-order multivariate forms in automatic control, and best rank-one approximation in data
analysis. Tensor eigenvalues were introduced by Lim and Qi in 2005.

Definition 1.1. Let A be a k'"'-order I-dimensional tensor. If x € C'\ {0} and \ € C satisfy
Akt = )\x[k_l],

then we say that A is an eigenvalue of A, and that x is its corresponding eigenvector. Here,
l

k—1y, ._
(Ax"0); = E Qi igis,...inTiaTisy - - > Tigs
12,13, 0k =1
where 1 <i <1, x = (x1,T,...,2)7, and zF~1 = (J:’f_l,x’;_l, ... ,xf‘l).

*Corresponding author.
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It is clear that when k = 2, the above definition coincides with the one that defines the eigen-
values and eigenvectors of real matrices. Hence, tensor eigenvalues generalize matrix eigenvalues.
According to Definition 1.1, a tensor eigenvalue problem is a nonlinear one which is equivalent to
solving a set of multivariate polynomials of variables x1,xs,...,z,, and an unknown A. In general,
the tensor eigenvalue problem given by Definition 1.1 is very difficult.

Definition 1.2. Let A be a 2m'-order n-dimensional tensor. Furthermore, assume that a nonzero
mt-order n-dimensional tensor X and X € C satisfy

A = AX, (1)

where
n

(‘A : x)ilai27“')inl. = E : iy ig,eim k1K, km Tl koK
k1,k2,.. . km=1
and1 <4 <n,1 <1l <m. Then, we refer to A as an eigenvalue of A, and to X as its corresponding
eigentensor.

For m = 1, A is a square matrix and Definition 1.2 reduces to the definition of matrix eigenvalues
and eigenvectors. In this paper, eigenvalue is always meant to be in the sense of Definition 1.2.
The unfolding matrix of a tensor is a useful tool for the study of such tensor problems as those
concerning eigenvalues and the numerical range.

Recently, tensor numerical ranges have been introduced by Ke, Li and Ng [2] on the basis
of tensor norms. These have the same properties as those of the numerical ranges of matrices,
except the normality, projection, and unitary invariance properties. The numerical ranges contain
the eigenvalues. So, computing the numerical range of a tensor may be useful in designing fast
algorithms for the calculation of its eigenvalues.

Our idea is to generalize the numerical range of a matrix to the numerical range of an even-
order tensor, one that contains the tensor eigenvalues in the sense of Definition 1.2. We define the
numerical range of even-order tensors using the even-order tensor unfolding matrix norms. We show
that the basic properties of the numerical range of a matrix, such as compactness and converity,
are valid for the numerical range of an even-order tensor. It is useful to estimate Toeplitz tensor
eigenvalues in the process of image restoration. Therefore, numerical ranges of Toeplitz tensors
can be used in image processing.

2. UNFOLDING OPERATIONS AND TENSORS

Suppose that A is a 2m'-order n-dimensional tensor. We can reorder A as a square matrix
using the square matrix unfolding of tensors.

Definition 2.1. [/] Let A be a 2mth-order n-dimensional tensor. We use A1y, ooy imy J15 92y -« s Jm)
to denote the (i1,i9,- .., im, 1,52, - - -, jm)™ entry of A. The square matriz unfolding of A with an
ordering P is an n™-by-n™ matriz Ap whose (k,h)™ entry is given by
AP(k7 h) = A(illa ilQa ceey ilmuj/laj/% ce ’j/m)7
where
E=n""10" 1) +n" 20y = 1)+ +n(i' ey — 1) + i1,
h=n""1G =)+ 0" 2 = Dt (i = 1) 4 5,

and 1 < i'y,7'; <n,1 <1 <m. Here, P is the permutation matriz corresponding to ordering P
that satisfies

(1,7 2oy ) = (i1, 425 - -« yim) P, (G 15d 9o d'm) = 1y J2y - oy Jm) P
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Example 2.2. [/] Suppose that A = (a; jx.1) is a 4-order three-dimensional tensor. Let P be
the permutation matriz given by
0 1
P ( o1 ) .

We note that (i'1,i'3) = (i1,i2)P. The corresponding square matriz unfolding of A is a 3%-by-32
matriz, namely,

1111 a1121 @1131 41112 G1122 41132 @1113 41123 (1133
a2111  A2121 (2131 A2112 G2122 042132 02113 042123 (2133
a3111  as3121  G3131  A3112 G3122 43132 (3113 (3123 (43133
a1211  @1221 @1231 @1212 @1222 @1232 @A1213 (1223 (1233
a2211  G2221 G2231 (2212 A2222 (2232 (A2213 (2223 (2233
a3211 a3221 (3231 A3212 (3222 (A3232 (3213 (3223 (3233
1311 A1312 @1331 A1312 G1322 A1332 @1313 A1323 (31333
2311 A2321 (2331 (A2312 (2322 (2332 (2313 (2323 (2333
| 33311 (3321 @3331 (3312 043322 (3332 (3313 (A3323 (3333 |

Ap

Given two different orderings P and P’, it is interesting to note that Ap and Ap: are similar
via a permutation matrix.

Proposition 2.3. [I] Suppose that P and P’ are two different orderings. Then, there exists a
permutation matric [[p p such that

[Ipp Ar ng' = Ap.

Definition 2.4. [/] Let X be an m*"-order n-dimensional tensor. The vectorization of X with an
ordering P is an n™-vector xp whose j™ entry xp(j) is given by

2p())= Xiryizyosims 1< <1<k <m,
where j = Z;n;ll n™=1(i'y—1)+1i', and P is the permutation matriz corresponding to the ordering
P.‘(i/l, [N ,i/m) == (il, ce ,’Lm)P

Proposition 2.5. [1] The tensor eigenvalue problem in (1) is equivalent to the matriz eigenvalue
system
Apxp = )\xp.

According to Proposition 2.5, it is possible to calculate the eigenvalues and eigentensors of A

by solving the eigenvalue problem of matrix unfolding Ap corresponding to A with ordering P.

Definition 2.6. [/] Let A be a 2m'"-order n-dimensional tensor. The tensor A* whose entries are
gen by @y, jo... jmiitisseims JOT 1 <lig, jr <noand 1 < k < m, is called the conjugate transpose
of A. We say that A is Hermitian if

Qi iz st 25 esim = Q41,32 5eeesdm 0158250 sim

forl <ig,jr <nandl <k <m, thatis, A= A*. Note that A is symmetric if a;, s, ...

A1, Go,sfimyi1502, e sim

SImsJ1,25 0 0m T

We define the contraction product of two 2mt-order n-dimensional tensors.

Definition 2.7. [I] Let A and B be 2m'"-order n-dimensional tensors. The contraction product
of A and B, denoted by A B, is a tensor of order 2m and dimension n which is defined by
n
(‘A*%)il,iQ,‘,,7im7j17j2,u,,jm = Z Qi iy k1 Koo Ot Ko Ko 152 m 3
k1,k2,....km=1
where 1 < i, jxr <nand1 <k < m.
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Also, we can write

(A*B)Gyevyiy gty ey dm) =A By 1y ey Jm),
where 1 < ji < n,1 < k < m. The following proposition presents the basic properties of the
contraction product.
Normal tensors. Let A be a 2m"-order n-dimensional tensor. We call A a normal tensor if
A*x A* = A* x A, that is,
(‘A’ *A*)ilyiQ"'

SlmsJ15d25 - m

n
- E Qi in,eim, k1 k2, km Q102,00 0m ok k2, b
k1,k2,...,km=1
n
= § Aly ko, ki1 62,000 Akt k2 k1,02, 0 m
k1,k2,....,km=1

= (A" * A)iy s
where 1 <i4j,5; <nand 1 <!l <m.
Diagonal tensor. A tensor D = (di, iy, i 1) € CE™ is called a diagonal tensor if
dil7i27~--wimvjle27~~7j'm, = 07 when (ila 127 s ’Zm) 7é (jlaj?a v a]m)

SEmyJ1,25e 0 Jm

Unitary tensors. A 2m™-order n-dimensional tensor U is said to be a unitary tensor if U U* =
U* x U=Tg, where Tg = (€iy,is,....im.j1.j2,im ) 1S the identity tensor in which

o o R la (117227"'7Zm):(]1’.]25"'a.]m)
Citsin,esim,did2 e ndm = 0. otherwise
)

T-unitary similar tensors. Given A, B € C"™")  we say that A is T-unitary similar to B if
A=U"xB*xU,
where U € C*™") is a unitary tensor.

Theorem 2.8. (Eigenvalue decomposition of normal tensors) Let A be a 2m'"-order n-dimensional
tensor. Then, A is a normal tensor if and only if there is a unitary tensor V € CE™™) such that

A=V*DxV*,

where D € CE™M) s q diagonal tensor whose entries are the eigenvalues of A. Moreover, the
above decomposition can be written as

m
n

A=) 0VioV7,

i=1
where V; € C™™) s the eigentensor corresponding to the eigenvalue o;.

Tensor norm. We define the tensor norm ||| . ||| on C™™ as follows. Given X, an m'"-order
n-dimensional tensor, we define its tensor norm by

XA = [lzpll,
where ||.|| is the vector norm.

Below, we provide some examples of tensor norms.
Let X = (4, is,....i,,) be an m™-order n-dimensional tensor.

11,825y im =1

1
e Tensor F-norm: ||| X H|F:(Zn | @iy ig.o i, |2) ’

e Tensor 1-norm: ||| X |||,=|lzp];-
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e Tensor oo-norm: ||| X |||, =|lzp|| -

e Tensor 2—norm: ||| X |||;=|zp|,.

Definition 2.9. If ||| is the matriz norm, the function ||| . |||p defined on C™™) by
IFA Tl = (APl
is called the tensor P-norm associated with the permuation matriz P. Also, ||| . |||p is said to be

consistent with the tensor norm on C™™) if
FA-XIE< (A X

where X € C"™™) and ||| . ||| is the tensor norm.

The following examples are tensor P-norms consistent with the tensor norm ||| . ||.

— (s th - -
Let A = (Giyig,....im 51,5205 ) D€ & 2m*-order n-dimensional tensor.
1

3
e Tensor Pp-norm: ||| A H|PF:<ZZI7,€27___7,M:1 | Qi ig,osim kit ke ki ‘2) =

|Ap||z, where Ap is the square marix unfolding of A. This tensor Pp-norm is consistent
with the tensor norm [|| . |||z, because

n n 2

I AX | = ) D T N T S SO S S

1,02 im =1 k1,ka,...,km=1

=

n

< DR T

k1,k2,.. km=1

Nl

n n 2

E E | @iy i, ik ke

11,12, im =1 k1,k2,....km=1

=Xl Alllpe -
e Tensor Pr-norm: ||| A [[|p =[|Ap];.
e Tensor Po-norm: ||| A ||[p_=|l4p| .

e Tensor Py-norm: ||| A [[|p,=[|Ap|,-

It is clear that ||| . [|[p,, [I - ||, and ||| . ||| p_ are consistent with the tensor norms ||| . |||, ]| - [I[5
and [[| - [[ -
Next, we let F be a subset of C(2™™) guch that A = (@iy ig o immoit zsni) € I if and only if

Qi1 ,i2,esimyd1,d2s0dm — Agusdzsedmiki ks km
for any 41,49, ..., 4m, j1,J2, - - -, Jm and (k1, ks, ..., k) being any permutation of (i1,...,4m). It is
clear FF is a vector space and the set of even-order symmetric tensors is a subset of F.

Definition 2.10. Let ||| . ||| be a norm on F defined by

max
[A-X ]
A = max —————,
1A e = o
where ||| . ||| is a tensor norm on C"™™ and ||| A.X ||| = |Apzp]|.

This norm has the following properties.
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o ||| Je [lI=1.
e For any X € Cmm),
A X <A [llmaa 1] X ]
The following examples are norms of this type.

[[A-XI|
o |1 A oz, = maxaczo i, ™
A.X
o [l Alllaz, = maxxo w
A.X
o 1A g, = mas o Xl

Definition 2.11. Let A be a 2m™-order n-dimensional tensor. The numerical range of A is
defined by

Wi (A = (e C:u—XI< ||| A= Mg [llp}

AeC
where ||| . |||p is a tensor P-norm consistent with the tensor norm, and I is a 2m'"-order n-
dimensional tensor.
Theorem 2.12. Let A, B and C be 2m'"-order n-dimensional tensors. If ||| . |||p is the tensor

P-norm consistent with the tensor norm, then the following hold.

(1) Wy, (A) is a compact and conver set.

(ii) W\||~|Hp A+adg) = W|||~|Hp (A) + a, for any a € C.
(iii) WH|~|HP (OLA) = OéWHHHP (.A), for any o € C.

(V) Wiy, (A +B) € Wy, (A) Wiy, (B)-

(v) If A,C € C™™ then W

(A®C)=Co(Wp.. (A)U W (€)).

maxg mazg mawxg

Using the CP decomposition, we can find a relationship between numerical ranges and singular
values of even-order tensors.

CP decomposition. [3] Let A be a 2m"-order n-dimensional tensor. If there exist a positive
integer 7, scalars a; for j € [r], and vectors ") with |||, = 1 for i € [2m] and j € [r] such
that .
A= Zajx(jJ) R x(j,Qm)7
j=1
then (?7?) is said be a CP decomposition of A. It is easy to see A always admits such a tensor
decomposition when r is sufficiently large . The minimal value of r is called the rank of A.

Theorem 2.13. If A € C?™™ and rank(A) = m, then
A=UxDxV*,

where U,V,D € CE™")  and D is the diagonal tensor whose measure of the diagonal entries is
equal to the square root of the eigenvalues of A x A*.
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