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Abstract. In this paper, the numerical range of an even-order tensor is defined using the norm
of its square matrix unfolding. The basic properties of the numerical range of a matrix, such as
compactness and convexity, are proved to hold for the numerical range of an even-order tensor.
Also, we introduce normal tensors based on the contraction product. According to the Tucker de-
composition, we get the numerical range of a normal tensor. Next, we introduce the singular-value
decomposition (SVD) of an even-order tensor. Using this decomposition, we obtain the numerical
range of such a tensor.
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1. introduction

For a kth-order l-dimensional tensor A ( or A ∈ C(k,l)), the numerical range is defined by

W|||.|||(A) =
⋂
λ∈C
{µ ∈ C :| µ− λ |≤ ξ.||| A− λI |||},

where I ∈ C(k,l) is the identity tensor, ||| . ||| is a consistent tensor norm on C(k,l), and ξ is a
scalar [2]. One fundamental fact about the numerical range is that W|||.|||(A) is a convex subset

of C that contains the spectrum of A, for every A ∈ C(k,l). For high-dimensional problems,
the data have an inherent tensor structure, and the difference slices of the data may have some
relationships. If we process brain MRI images slice-by-slice, we may lose some information of
the tensor structure of the images. Thus, it is necessary to study the tensor eigenvalue problem.
The eigenvalues of high-order tensors are used in different fields. For example, medical resonance
imaging, diffusion tensor imaging, high-order Markov chains and data mining, positive definiteness
of even-order multivariate forms in automatic control, and best rank-one approximation in data
analysis. Tensor eigenvalues were introduced by Lim and Qi in 2005.

Definition 1.1. Let A be a kth-order l-dimensional tensor. If x ∈ Cl \ {0} and λ ∈ C satisfy

Axk−1 = λx[k−1],

then we say that λ is an eigenvalue of A, and that x is its corresponding eigenvector. Here,

(Axk−1)i :=

l∑
i2,i3,...,ik=1

ai,i2,i3,...,ikxi2xi3 , . . . , xik ,

where 1 ≤ i ≤ l, x = (x1, x2, . . . , xl)
T , and x[k−1] = (xk−11 , xk−12 , . . . , xk−1l ).
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It is clear that when k = 2, the above definition coincides with the one that defines the eigen-
values and eigenvectors of real matrices. Hence, tensor eigenvalues generalize matrix eigenvalues.
According to Definition 1.1, a tensor eigenvalue problem is a nonlinear one which is equivalent to
solving a set of multivariate polynomials of variables x1, x2, . . . , xn, and an unknown λ. In general,
the tensor eigenvalue problem given by Definition 1.1 is very difficult.

Definition 1.2. Let A be a 2mth-order n-dimensional tensor. Furthermore, assume that a nonzero
mth-order n-dimensional tensor X and λ ∈ C satisfy

A · X = λX, (1)

where

(A · X)i1,i2,...,im =

n∑
k1,k2,...,km=1

ai1,i2,...,im,k1,k2,...,kmxk1,k2...,km ,

and 1 ≤ il ≤ n, 1 ≤ l ≤ m. Then, we refer to λ as an eigenvalue of A, and to X as its corresponding
eigentensor.

For m = 1, A is a square matrix and Definition 1.2 reduces to the definition of matrix eigenvalues
and eigenvectors. In this paper, eigenvalue is always meant to be in the sense of Definition 1.2.
The unfolding matrix of a tensor is a useful tool for the study of such tensor problems as those
concerning eigenvalues and the numerical range.

Recently, tensor numerical ranges have been introduced by Ke, Li and Ng [2] on the basis
of tensor norms. These have the same properties as those of the numerical ranges of matrices,
except the normality, projection, and unitary invariance properties. The numerical ranges contain
the eigenvalues. So, computing the numerical range of a tensor may be useful in designing fast
algorithms for the calculation of its eigenvalues.

Our idea is to generalize the numerical range of a matrix to the numerical range of an even-
order tensor, one that contains the tensor eigenvalues in the sense of Definition 1.2. We define the
numerical range of even-order tensors using the even-order tensor unfolding matrix norms. We show
that the basic properties of the numerical range of a matrix, such as compactness and convexity,
are valid for the numerical range of an even-order tensor. It is useful to estimate Toeplitz tensor
eigenvalues in the process of image restoration. Therefore, numerical ranges of Toeplitz tensors
can be used in image processing.

2. Unfolding operations and tensors

Suppose that A is a 2mth-order n-dimensional tensor. We can reorder A as a square matrix
using the square matrix unfolding of tensors.

Definition 2.1. [1] Let A be a 2mth-order n-dimensional tensor. We use A(i1, i2, . . . , im, j1, j2, . . . , jm)
to denote the (i1, i2, . . . , im, j1, j2, . . . , jm)th entry of A. The square matrix unfolding of A with an
ordering P is an nm-by-nm matrix AP whose (k, h)th entry is given by

AP (k, h) = A(i′1, i
′
2, . . . , i

′
m, j

′
1, j
′
2, . . . , j

′
m),

where
k = nm−1(i′1 − 1) + nm−2(i′2 − 1) + · · ·+ n(i′m−1 − 1) + i′m,

h = nm−1(j′1 − 1) + nm−2(j′2 − 1) + · · ·+ n(j′m−1 − 1) + j′m,

and 1 ≤ i′l, j
′
l ≤ n, 1 ≤ l ≤ m. Here, P is the permutation matrix corresponding to ordering P

that satisfies

(i′1, i
′
2, . . . , i

′
m) = (i1, i2, . . . , im)P, (j′1, j

′
2, . . . , j

′
m) = (j1, j2, . . . , jm)P.
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Example 2.2. [1] Suppose that A = (ai,j,k,l) is a 4th-order three-dimensional tensor. Let P be
the permutation matrix given by

P =

(
0 1
1 0

)
.

We note that (i′1, i
′
2) = (i1, i2)P . The corresponding square matrix unfolding of A is a 32-by-32

matrix, namely,

AP =



a1111 a1121 a1131 a1112 a1122 a1132 a1113 a1123 a1133
a2111 a2121 a2131 a2112 a2122 a2132 a2113 a2123 a2133
a3111 a3121 a3131 a3112 a3122 a3132 a3113 a3123 a3133
a1211 a1221 a1231 a1212 a1222 a1232 a1213 a1223 a1233
a2211 a2221 a2231 a2212 a2222 a2232 a2213 a2223 a2233
a3211 a3221 a3231 a3212 a3222 a3232 a3213 a3223 a3233
a1311 a1312 a1331 a1312 a1322 a1332 a1313 a1323 a1333
a2311 a2321 a2331 a2312 a2322 a2332 a2313 a2323 a2333
a3311 a3321 a3331 a3312 a3322 a3332 a3313 a3323 a3333


Given two different orderings P and P ′, it is interesting to note that AP and AP ′ are similar

via a permutation matrix.

Proposition 2.3. [1] Suppose that P and P ′ are two different orderings. Then, there exists a
permutation matrix

∏
P,P ′ such that∏

P,P ′ AP
∏T
P,P ′ = AP ′ .

Definition 2.4. [1] Let X be an mth-order n-dimensional tensor. The vectorization of X with an
ordering P is an nm-vector xP whose jth entry xP (j) is given by

xP (j)= Xi1,i2,...,im , 1 ≤ ik ≤ n, 1 ≤ k ≤ m,
where j =

∑m−1
k=1 n

m−1(i′k−1)+i′m and P is the permutation matrix corresponding to the ordering
P:(i′1, . . . , i

′
m) = (i1, . . . , im)P.

Proposition 2.5. [1] The tensor eigenvalue problem in (1) is equivalent to the matrix eigenvalue
system

APxP = λxP .

According to Proposition 2.5, it is possible to calculate the eigenvalues and eigentensors of A
by solving the eigenvalue problem of matrix unfolding AP corresponding to A with ordering P .

Definition 2.6. [1] Let A be a 2mth-order n-dimensional tensor. The tensor A∗ whose entries are
given by aj1,j2,...,jm,i1,i2,...,im , for 1 ≤ ik, jk ≤ n and 1 ≤ k ≤ m, is called the conjugate transpose
of A. We say that A is Hermitian if

ai1,i2,...,im,j1,j2,...,jm= aj1,j2,...,jm,i1,i2,...,im
for 1 ≤ ik, jk ≤ n and 1 ≤ k ≤ m, that is, A= A∗. Note that A is symmetric if ai1,i2,...,im,j1,j2,...,jm=
aj1,j2,...,jm,i1,i2,...,im .

We define the contraction product of two 2mth-order n-dimensional tensors.

Definition 2.7. [1] Let A and B be 2mth-order n-dimensional tensors. The contraction product
of A and B, denoted by A ?B, is a tensor of order 2m and dimension n which is defined by

(A ?B)i1,i2,...,im,j1,j2,...,jm =

n∑
k1,k2,...,km=1

ai1,i2,...,im,k1,k2,...,kmbk1,k2,...,km,j1,j2,...,jm ,

where 1 ≤ ik, jk ≤ n and 1 ≤ k ≤ m.
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Also, we can write

(A ?B)(:, . . . , :, j1, . . . , jm) = A ·B(:, . . . , :, j1, . . . , jm),

where 1 ≤ jk ≤ n, 1 ≤ k ≤ m. The following proposition presents the basic properties of the
contraction product.
Normal tensors. Let A be a 2mth-order n-dimensional tensor. We call A a normal tensor if
A ?A∗ = A∗ ?A, that is,
(A ?A∗)i1,i2,...,im,j1,j2,...,jm

=

n∑
k1,k2,...,km=1

ai1,i2,...,im,k1,k2,...,kmaj1,j2,...,jm,k1,k2,...,km

=

n∑
k1,k2,...,km=1

ak1,k2,...,km,i1,i2,...,imak1,k2,...,km,j1,j2,...,jm

= (A∗ ?A)i1,i2,...,im,j1,j2,...,jm ,
where 1 ≤ il, jl ≤ n and 1 ≤ l ≤ m.
Diagonal tensor. A tensor D = (di1,i2,...,im,j1,j2,...,jm) ∈ C(2m,n) is called a diagonal tensor if
di1,i2,...,im,j1,j2,...,jm = 0, when (i1, i2, . . . , im) 6= (j1, j2, . . . , jm).

Unitary tensors. A 2mth-order n-dimensional tensor U is said to be a unitary tensor if U ? U∗ =
U∗ ? U=IE , where IE = (ei1,i2,...,im,j1,j2,...,jm) is the identity tensor in which

ei1,i2,...,im,j1,j2,...,jm =

{
1, (i1, i2, . . . , im) = (j1, j2, . . . , jm)

0, otherwise

T-unitary similar tensors. Given A,B ∈ C(2m,n), we say that A is T-unitary similar to B if

A = U∗ ?B ? U,

where U ∈ C(2m,n) is a unitary tensor.

Theorem 2.8. (Eigenvalue decomposition of normal tensors) Let A be a 2mth-order n-dimensional
tensor. Then, A is a normal tensor if and only if there is a unitary tensor V ∈ C(2m,n) such that

A = V ?D ? V∗,

where D ∈ C(2m,n) is a diagonal tensor whose entries are the eigenvalues of A. Moreover, the
above decomposition can be written as

A =

nm∑
i=1

σiVi ◦ Vi∗,

where Vi ∈ C(m,n) is the eigentensor corresponding to the eigenvalue σi.

Tensor norm. We define the tensor norm ||| . ||| on C(m,n) as follows. Given X, an mth-order
n-dimensional tensor, we define its tensor norm by

||| X ||| = ‖xP ‖,
where ‖.‖ is the vector norm.

Below, we provide some examples of tensor norms.
Let X = (ai1,i2,...,im) be an mth-order n-dimensional tensor.

• Tensor F -norm: ||| X |||F=
(∑n

i1,i2,...,im=1 | ai1,i2,...,im |
2
) 1

2

.

• Tensor 1-norm: ||| X |||1=‖xP ‖1.
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• Tensor ∞-norm: ||| X |||∞=‖xP ‖∞.

• Tensor 2−norm: ||| X |||2=‖xP ‖2.

Definition 2.9. If ‖.‖ is the matrix norm, the function ||| . |||P defined on C(2m,n) by

||| A |||P = ‖AP ‖
is called the tensor P -norm associated with the permuation matrix P . Also, ||| . |||P is said to be

consistent with the tensor norm on C(m,n) if

||| A · X ||| ≤ ||| A |||P ||| X |||,
where X ∈ C(m,n) and ||| . ||| is the tensor norm.

The following examples are tensor P -norms consistent with the tensor norm ||| . |||.
Let A = (ai1,i2,...,im,j1,j2,...,jm) be a 2mth-order n-dimensional tensor.

• Tensor PF -norm: ||| A |||PF
=
(∑n

k1,k2,...,km=1 | ai1,i2,...,im,k1,k2,...,km |2
) 1

2

=

‖AP ‖F , where AP is the square marix unfolding of A. This tensor PF -norm is consistent
with the tensor norm ||| . |||F , because

||| A.X |||F =

 n∑
i1,i2,...,im=1

|
n∑

k1,k2,...,km=1

ai1,i2,...,im,k1,k2,...,kmxk1,k2,...,km |
2
 1

2

≤

 n∑
k1,k2,...,km=1

| xk1,k2,...,km |
2

 1
2

 n∑
i1,i2,...,im=1

n∑
k1,k2,...,km=1

| ai1,i2,...,im,k1,k2,...,km |
2
 1

2

=||| X |||F ||| A |||PF
.

• Tensor P1-norm: ||| A |||P1
=‖AP ‖1.

• Tensor P∞-norm: ||| A |||P∞=‖AP ‖∞.

• Tensor P2-norm: ||| A |||P2
=‖AP ‖2.

It is clear that ||| . |||P1
, ||| . |||P2

and ||| . |||P∞ are consistent with the tensor norms ||| . |||1, ||| . |||2
and ||| . |||∞.

Next, we let F be a subset of C(2m,n) such that A = (ai1,i2,...,im,j1,j2,...,jm) ∈ F if and only if

ai1,i2,...,im,j1,j2,...,jm = aj1,j2,...,jm,k1,k2,...,km

for any i1, i2, . . . , im, j1, j2, . . . , jm and (k1, k2, . . . , km) being any permutation of (i1, . . . , im). It is
clear F is a vector space and the set of even-order symmetric tensors is a subset of F.

Definition 2.10. Let ||| . |||max be a norm on F defined by

||| A |||max = max
X6=0

||| A.X |||
||| X |||

,

where ||| . ||| is a tensor norm on C(m,n) and ||| A.X ||| = ‖APxP ‖.

This norm has the following properties.
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• ||| IE |||=1.
• For any X ∈ C(m,n),

||| A · X ||| ≤||| A |||max ||| X |||.
The following examples are norms of this type.

• ||| A |||max1
= maxX6=0

|||A.X|||1
|||X|||1

.

• ||| A |||max2
= maxX6=0

|||A.X|||2
|||X|||2

.

• ||| A |||max∞ = maxX6=0
|||A.X|||∞
|||X|||∞

.

Definition 2.11. Let A be a 2mth-order n-dimensional tensor. The numerical range of A is
defined by

W|||.|||P (A) =
⋂
λ∈C
{µ ∈ C :| µ− λ |≤ ||| A− λIE |||P },

where ||| . |||P is a tensor P -norm consistent with the tensor norm, and IE is a 2mth-order n-
dimensional tensor.

Theorem 2.12. Let A,B and C be 2mth-order n-dimensional tensors. If ||| . |||P is the tensor
P -norm consistent with the tensor norm, then the following hold.

(i) W|||.|||P (A) is a compact and convex set.

(ii) W|||.|||P (A + αIE) = W|||.|||P (A) + α, for any α ∈ C.

(iii) W|||.|||P (αA) = αW|||.|||P (A), for any α ∈ C.

(iv) W|||.|||P (A + B) ⊂W|||.|||P (A) +W|||.|||P (B).

(v) If A,C ∈ C(m,n), then W|||.|||max2
(A⊕ C) = Co(W|||.|||max2

(A) ∪ W|||.|||max2
(C)).

Using the CP decomposition, we can find a relationship between numerical ranges and singular
values of even-order tensors.

CP decomposition. [3] Let A be a 2mth-order n-dimensional tensor. If there exist a positive
integer r, scalars αj for j ∈ [r], and vectors x(j,i) with ‖x(j,i)‖2 = 1 for i ∈ [2m] and j ∈ [r] such
that

A =

r∑
j=1

αjx
(j,1) ⊗ · · · ⊗ x(j,2m),

then (??) is said be a CP decomposition of A. It is easy to see A always admits such a tensor
decomposition when r is sufficiently large . The minimal value of r is called the rank of A.

Theorem 2.13. If A ∈ C(2m,n) and rank(A) = m, then

A = U ?D ? V∗,

where U,V,D ∈ C(2m,n), and D is the diagonal tensor whose measure of the diagonal entries is
equal to the square root of the eigenvalues of A ?A∗.
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