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Abstract

For compressed sensing (CS) applications, it is significant to construct deterministic
measurement matrices with good sparse recovery performance. In this article we present a
method to obtain a class sensing matrices, by using Rudin-Shapiro polynomials.
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1 Introduction
Compressive sensing (CS), also known as compressive sampling, has received considerable re-
search of interest in various applications due to its superior capability to recovery a sparse
signal from a much smaller number of measurements than its original dimension. Mathemat-
ically speaking, given a measurement matrix (sensing matrix) A ∈ Rm×N with m ≪ N , and
given a measurement vector y = Ax ∈ Rm associated with an s-sparse vector x ∈ RN (a
vector that has at most s nonzero entries), we want to access this vector in a numerically
tractable way. For solving CS problems, there are several classes of algorithms that have been
used in applications, such as l1 minimization algorithms, greedy algorithms, Iterative thresh-
olding/shrinkage algorithms and combinatorial algorithms. In addition, a number of variants
of the greedy pursuit algorithms have also been proposed by various authors, e.g., Orthogonal
Matching Pursuit (OMP), Compressive Sampling Matching Pursuit (CoSaMP) and Subspace
Pursuit (SP) (see [5]). Sensing matrix design is one important topic in compressive sensing. In
this paper we consider the matrix sensing problem and present a class of measurements matrices,
named Rudin-Shapiro equiangular tight frames (ETFs).

A family of vectors F = {fi}Ni=1 is a frame for a real M -dimensional Hilbert space HM if
there are constants 0 < A ≤ B <∞ so that for all f ∈ HM

A∥f∥2 ≤
N∑
i=1

|⟨f, fi⟩|2 ≤ B∥f∥2.
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The corresponding frame operator is FF ∗ =
∑N

n=1 fnf
∗
n, where f∗n denotes the linear functional

that maps a given f ∈ HM to the scalar ⟨f, fn⟩.
The sequence F is said to be a tight frame if there exists A > 0 such that FF ∗ = AI.

Meanwhile, F is equiangular if ∥fn∥ = 1 for all n and if there exists α ≥ 0 such that |⟨fn, fm⟩| = α
for all n ̸= m.

Many approaches to constructing ETFs have focused on the special case in which every entry
of F is a root of unity [6]. In this article, we provide a construction of ETFs. A version of the ETF
construction method we present here, was employed by M. Fickus and et. al. [4] (see also [1, 3]
and references therein). To do this, at first we construct a class of discrete wavelet transforms,
by applying the Rudin-Shapiro polynomials. These transformations as matrix representation,
are orthogonal matrices. We apply these matrices with Steiner systems to present a class of
ETFs, we named it Rudin-Shapiro ETFs..

This paper is organized as follows. In section 2 we introduce the classical Rudin-Shapiro
polynomials to construct a family of discrete wavelet transforms, named Rudin-Shapiro DWT.
In section 3, we construct tight frames with the introduced DWTs and finally the numerical
simulation results are presented.

2 Classical Rudin-Shapiro polynomials
In this section we introduce a special type of trigonometric polynomials (as a ”pair”) called
Rudin-Shapiro polynomials that will be used to construct a sequence of low-pass filters. They
were introduced by H. S. Shapiro in his study of the magnitude for certain trigonometric sums.
The Shapiro result was rediscovered by Rudin and published in 1959, and is now known as
the Rudin-Shapiro polynomials. These polynomials have been used by many authors (see for
example [2] and references therein).
If P0 ≡ 1 and Q0 ≡ 1, for ξ ∈ [0, 1) and for all n ≥ 0, we define the Rudin-Shapiro polynomials
recursively by

Pn+1(ξ) = Pn(ξ) + ei2π2
nξQn(ξ), (2.1)

Qn+1(ξ) = Pn(ξ)− ei2π2
nξQn(ξ). (2.2)

It can easily be verify that the coefficients of both Pn and Qn are +1 or −1. If the sequence
{αk}∞k=0 in {−1, 1} is so that

Pn(ξ) =

2n−1∑
k=0

αke
2πikξ,

then α0 = 1 and for k > 0, we have α2k = αk and α2k+1 = (−1)kαk. The following results can
be found in [2].
Theorem 2.1. For any integer n ≥ 0 and 0 ≤ k ≤ 22n+1 − 1, let

αn(k) =
1

2n+1
P̂2n+1(k) and βn(k) = (−1)kαn(2

2n+1 − 1− k).

Then the functions φn and ψn which satisfy the following two-scale equations are father and
mother wavelets, respectively,

φn(x) =
√
2

22n+1−1∑
k=0

αn(k)φn(2x− k), (2.3)

ψn(x) =
√
2

22n+1−1∑
k=0

βn(k)ϕn(2x− k). (2.4)
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In the case of n = 0, φ0(x) = φ0(2x) + φ0(2x − 1), which implies that φ0 = χ[0,1) and
ψ0(x) = φ0(2x)− φ0(2x− 1).
Now let h(i) be a signal and αn(k), βn(k) be as in the previous theorem. Then the approximation
operator Hn and the detail operator Gn corresponding to αn(k) are defined by

(Hnh)(k) =
∑
i

h(i)αn(i− 2k), (Gnh)(k) =
∑
i

h(i)βn(i− 2k).

Therefore the matrix representation of these operators are as follows:

Hn =


αn(0) αn(1) αn(2) ... αn(M − 2) αn(M − 1)

αn(M − 2) αn(M − 1) αn(0) ... αn(M − 4) αn(M − 3)
...

...
... . . . ...

...
αn(2) αn(3) αn(4) ... αn(0) αn(1)

 , (2.5)

Gn =


βn(0) βn(1) βn(2) ... βn(M − 2) βn(M − 1)

βn(M − 2) βn(M − 1) βn(0) ... βn(M − 4) βn(M − 3)
...

...
... . . . ...

...
βn(2) βn(3) βn(4) ... βn(0) βn(1)

 (2.6)

Putting M = 22n+1, the Rudin-Shapiro discrete wavelet transform (DWT) is defined by

Wn =
1√
M

(
Hn

Gn

)

3 Constructing ETF
In [4], the authors have provided a new method for constructing equiangular tight frames (ETFs).
The construction is based on a tensor-like combination of a Steiner system and a regular simplex.

Steiner system has been studied for over a century. In short, a Steiner system with parameters
k, ν, written (2, k, ν)-Steiner system, is an ν-element set V together with a set of order ν(ν−1)

k(k−1)

contains k-element subsets of V (called blocks) with the property that each 2-element subset of
V is contained in exactly one block.

Here we employ DWT and Steiner system to construct tight frames.

Theorem 3.1. Every (2, k, ν)-Steiner system generates a tight frame consisting of N = ν(1 +
ν−1
k−1) vectors in M = ν(ν−1)

k(k−1) dimensional space with redundancy M
N = k(1 + k−1

ν−1) and density
k
ν = ( N−1

M(N−M))
1
2 .

Specifically, a (ν(ν−1)
k(k−1))× ν(1 + ν−1

k−1) tight frame matrix F may be constructed as follows:

(1) Let AT be the ν(ν−1)
k(k−1) × ν transpose of the adjacency matrix of a (2, k, ν)-Steiner system;

(2) Let W be any (1 + ν−1
k−1)× (1 + ν−1

k−1) matrix of corresponding to a DWT;

(3) For given 1 ≤ j ≤ ν, let Fj be the ν(ν−1)
k(k−1) × (1 + ν−1

k−1) matrix obtained from the j-th
column of AT by replacing each of the one-valued entries with a distinct rows of W, and
every zero-valued entry with a row of zeros;

(4) F = [F1F2 · · ·Fν ]

3



F. Abdollahi

In theorem (3.1) if W is a Hadamard matrix then the tight frame that we construct, will be
equiangular [4]. For every positive integer n, Wn that constructed as a multiple of a Hadamard
matrix. In fact, 2 2n+1

2 Wn is a Hadamard matrix, so we can put it instead of W in theorem(3.1)
and get an equiangular tight frame.

For every (2, k, ν)-Steiner system such that ν−1
k−1 +1 = 22n+1 for some positive and integer n,

let AT be ν(ν−1)
k(k−1) ×ν transpose of the adjacency matrix of a (2, k, ν)-Steiner system, and for each

j = 1, ..., ν let Fj be a ν(ν−1)
k(k−1) × 22n+1 matrix obtained from the j-th column of AT by replacing

each of the one-valued entries with a distinct row of the Hadamard matrix which is multiple of
Golay wavelet transform. Then the columns of the ν(ν−1)

k(k−1) × ν22n+1 matrix F = [F1...Fν ], which
have orthogonal rows and unit norm columns whose inner products have constant modulus α,
provide a ETFs.
Example 3.1. The Ruding-Shapiro discrete wavelet transform corresponding to n = 1 is

W =
1√
8



−1 1 1 −1 1 1 1 1
1 1 −1 1 1 −1 1 1
1 1 1 1 −1 1 1 −1
1 −1 1 1 1 1 −1 1
1 −1 1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1
−1 −1 1 1 1 −1 1 −1
1 1 1 −1 1 −1 −1 −1


Let AT be 28× 8 transpose of the adjacency matrix of (2, 2, 8)-Steiner system, and for each

j = 1, ..., 8 let Fj be 28 × 8 matrix obtained from the jth column of DT by replacing each of
the one-valued entries with a distinct row of

√
8W , and every zero-valued entry with a row of

zeros. Then
F =

4√
14

[
F1 . . . F8

]
is an equiangular tight frame consisting of 64 vectors in R28 with redundancy 16

7 and density 1
4 .

Also suppose AT is a 35× 35 transpose of the adjacency matrix of (2, 3, 15)-Steiner system,
and for each j = 1, ..., 15 let Fj be 35×8 matrix obtained from the jth column of AT by replacing
each of the one-valued entries with a distinct row of

√
8W , and every zero-valued entry with a

row of zeros. Then
F =

4√
14

[
F1 . . . F15

]
is an equiangular tight frame consisting of 120 vectors in R35 with redundancy 24

7 and density
1
5 .

4 Experimental Results
In Figure 1, we compare OMP and CoSaMP algorithms with both Rudin-Shapiro ETF and
Gaussian measurement matrices A ∈ Rm×n. The measurement signal is given by y = Ax.
Reconstruction performance is quantified by the relative error, which is defined by

relative error =
∥x̃− x∥2
∥x∥2

,

where x̃ is the reconstructed signal matrix and x is the original one.
The experiments illustrate how the relative error of each algorithm changes along the sparsity.

We set n = 120 and m = 35. Let s (sparsity level) changes from 1 to 12 for measurement
matrices. For each sparsity value ss, the algorithms are tested for 100 trials.
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Figure 1: Plots of ∥x−x0∥/∥x0∥ as a function for OMP and CoSaMP. These methods have the advantage
at recovering Gaussian sparse vectors with Rudin-Shapiro ETF and Gaussian sensing matrices. The
results are average of 100 runs.
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