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Abstract

This paper is devoted to generalize accelerated overrelaxation iterative method for solving
a class of double saddle point problems. Also, we study convergence region of the proposed
method and then some numerical results are given to demonstrate the efficiency of the
presented method.
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1 Introduction

We consider a class of double saddle point problems as the following large and sparse form

Au ≡

 A B C
−BT 0 0
−CT 0 0

x
y
z

 =

b1
b2
b3

 ≡ b, (1)

where A ∈ Rn×n is symmetric positive definite(SPD) matrix, B ∈ Rn×m and C ∈ Rn×p have full
column ranks, , x, b1 ∈ Rn, y, b2 ∈ Rm and z, b3 ∈ Rp. For real eigenvalues of A, we use λmin(A)
and λmax(A) to denote the minimum and maximum eigenvalues of A, respectively. Moreover,
the notations Ran(A) and ρ(A) stand for the range and the spectral radius of A, respectively.
Linear systems of the form (1) arise from mixed finite element approximation of potential fluid
flow problems ; see [1, 2] and the references therein for detailed descriptions of these problems.
The following Proposition gives necessary and sufficient conditions or the invertibility of the
coefficient matrix A in (1).

Proposition 1.1. Let A be SPD and assume that B and C have full column ranks. Then
Ran(B) ∩ Ran(C) = {0} is a necessary and sufficient condition for the coefficient matrix A in
(1) to be invertible.
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2 Convergence region of DGAOR method
We propose generalized accelerated overrelaxation(AOR) iterative method for solving (1), based
on the following splitting

A = D − E − F ,

where

D =

A 0 0
0 Q 0
0 0 D

 , E =

 0 0 0
BT 0 0
CT 0 0

 , F =

0 −B −C
0 Q 0
0 0 D

 .

Here Q and D are preconditioning SPD matrices. The iteration matrix of the generalized AOR
is defined as

Mr,ω =

 (1− ω)I −ωA−1B −ωA−1B
ω(1− r)Q−1BT I − rωQ−1BTA−1B 0
ω(1− r)D−1CT 0 I − rωD−1CTA−1C

 . (2)

Note that, if ω = 0, then the proposed generalized AOR method diverges no matter what value
the accelerated parameter r take. Thus, we will assume ω ̸= 0. Therefore, the generalized AOR
method to solve double saddle point system (1) (DGAOR) can be defined by the following

u(k+1) = Mr,ωu
(k) + c, k = 0, 1, 2, . . . . (3)

where

c =

 A−1b1
Q−1(rBTA−1b1 + b2)
D−1(rCTA−1b1 + b3)

 ,

and u(0) ∈ Rm+n+p is the initial guess.
If we let λ be an eigenvalue of Mr,ω and u = (x; y, z)T be the corresponding eigenvector,

then we have

(1− ω − λ)x = ωA−1(By + Cz), (4)
(ω − r + rλ)Q−1BTx = (λ− 1)y, (5)
(ω − r + rλ)D−1CTx = (λ− 1)z. (6)

Lemma 2.1. If we let λ be an eigenvalue of the iteration matrix Mr,ω of DGAOR method
corresponding to the eigenvector u = (x; y, z)T , then x and z are not equal to zero, simultaneously,
and λ ≠ 1.

Proof. If we set x = 0 and z = 0, then (4) implies that By = 0. Because B has full column
rank, so y = 0 which is contradiction. Let λ = 1, and the associate eigenvector u = (x; y, z)T .
Then, by equations (4)-(6) we have

A−1(By + Cz) = −x, Q−1BTx = 0, D−1CTx = z.

This is the problem Au = 0, and by Proposition5 1.1 we have u = 0, which is a contradiction.

Lemma 2.2. If r = 1, then λ = 1 − ω is an eigenvalue of Mr,ω with multiplicity of at least
m. If r ̸= 1, then λ = 1 − ω is an eigenvalue of Mr,ω if and only if n > m; in this case the
multiplicity of λ is n−m− p.
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Proof. By definition (2) of Mr,ω, it can be deduced that for r = 1, λ = 1 − ω is an eigenvalue
of Mr,ω with multiplicity of at least m. Now, we assume r ̸= 1. By equations (4)-(6) we have

(r − 1)xTBQ−1BTx = 0,

which implies x = 0 for n = m, and x ̸= 0 for n > m. Thus λ = 1 − ω is an eigenvalue of
Mr,ω with multiplicity of n − (m + p). The latter statue comes from the fact that algebraic
multiplicity of an eigenvalue is at least equal to geometrical multiplicity.

Corollary 2.3. Let λ be an eigenvalue of the iteration matrix Mr,ω and the associate eigenvector
is u = (x; y, z)T . If λ ̸= 1− ω, then y ̸= 0 or z ̸= 0.

Theorem 2.4. Let A be SPD and assume that B and C have full column ranks, such that
Ran(B)∩Ran(C) = {0}. If Q and D are preconditioning SPD matrices, then for parameters ω
and r we have

λ2 + ((ω − 2) +
γ + β

α
rω)λ+ (1− ω) +

γ + β

α
ω(ω − r) = 0,

where α = x∗Ax, β = x∗BQ−1BTx, and γ = x∗CD−1CTx.

Proof. Equations (4)-(6) give(
A+

ω(ω − r + rλ)

(1− ω − λ)(1− λ)
CD−1CT

)
x =

ω

1− ω − λ
By, (ω − r + rλ)Q−1BTx = (λ− 1)y,

and therefore by definitions of α, β and γ we have

(1− λ)(1− ω − λ)α+ ω(ω − r + rλ)(γ + β) = 0

Lemma 2.5 ( [4, Lemma 2.3]). Both roots of the real quadratic equation λ2 − bλ + c = 0, are
less than one in modulus if and only if |c| < 1 and |b| < 1 + c.

It follows from Lemma 2.5 that ρ(Mr,ω) < 1 if and only if

|1− ω +
γ + β

α
ω(ω − r)| < 1 (7)

|ω − 2 +
γ + β

α
rω| < 1 + 1− ω +

γ + β

α
ω(ω − r). (8)

Equations (7) and (8) hold true if we have

0 < ω < 2, ω − α

γ + β
< r <

ω

2
.

Consequently, we have the following results.

Theorem 2.6. Let A be SPD and assume that B and C have full column ranks, such that
Ran(B) ∩ Ran(C) = {0} . If 0 < ω < min(2, 2λmin(A)

λmax(BQ−1BT )+λmax(CD−1CT )
) and

ω − λmin(A)

λmax(BQ−1BT ) + λmax(CD−1CT )
< r <

ω

2

then the DGAOR iterative scheme (3) converges to the exact solution of (1).
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3 Numerical results
We now describe some numerical experiments were carried out in order to analyze the behaviour
of the DGAOR method for different values of the parameter ω and r. The computational study
was done in the next problems.

Example 3.1. Let us consider the double saddle point system (1), where the matrices A, B
and C are defined as follows

A = (aij)n×n =


i+ 1, i = j
1, |i− j| = 1
0, otherwise.

, B = (bij)n×m =

{
j, i = n−m+ j
0, otherwise.

and
C = (cij)n×p =

{
j, i = j
0, otherwise.

For this problem we have that the conditions of Proposition 1.1 are satisfied(especially
Ran(B) ∩ Ran(C) = {0}), hence A is nonsingular and the double saddle point problem (1)
has a unique solution. The vector b is chosen so that the components of the exact solution u of
(1) have values equal to 1. We choose the preconditioning matrices Q = BTB and D = CTC for
the DGAOR method. All runs are started from the initial zero vector and terminated if the cur-
rent iterations satisfy ERR = ∥r(k)∥2

∥r(0)∥2
≤ 10−4, or if the prescribed iteration number kmax = 2000

is exceeded. Here we define r(k) as

r(k) =

b1
b2
b3

−

 A B C
−BT 0 0
−CT 0 0

x(k)

y(k)

z(k)

 .

Figure 1 shows ERR in terms of ω and r for n = 50,m = 30, p = 10(left) and n = 200,m =
100, p = 60(right). In view of Figure 1 we can conclude the fact that the minimum ERR is
obtained when the parameters ω and r are near the boundary of the convergence region. From
the results recorded in Table 1 we can conclude that ERR and computational time are kind
of important, to demonstrate the efficiency of DGAOR method in comparison with SOR-like
method(ω = r) [3].

Table 1: CPU time, iteration number and values of the parameters for DGAOR method

DGAOR method SOR-like method
n m p ω r minIT CPU(s) ERR minIT CPU(s) ERR
50 30 10 1.2538 0.5769 283 0.0313 9.902e-05 285 0.0625 9.996e-05
80 40 20 1.2538 0.5769 427 0.1719 9.980e-05 429 0.2188 9.978e-05
100 50 40 1.2538 0.5769 528 0.2813 9.918e-05 530 0.3281 9.914e-05
300 150 80 1.2538 0.5769 1571 4.2500 9.983e-05 1573 4.4688 9.983e-05

4 Conclusion
In this paper a generalization of accelerated overrelaxation (AOR) iterative method for solving a
class of double saddle point problems has been proposed, denoted by DGAOR. The convergence
region of the DGAOR method has been analyzed and numerical experiments were given to
demonstrate the efficiency of DGAOR method in comparison with SOR-like method.

4



Convergence Region of the GAOR Method for Double Saddle Point Problems

1.2
1

0.8
0.6

0.4

ω

0.2
00

0.2

r

0.4

×10-3

2

1.5

1

0.5

0
0.6

E
R

R

1.210.80.60.4

ω

0.20
0

0.2

r

0.4

×10-3

0.2

0.4

0.6

0.8

1

0

0.6

E
R

R

Figure 1: Convergence region for n = 50,m = 30, p = 10(left) and n = 200,m = 100, p =
60(right)
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