
Three-Term-Tensor Sylvester method for a class of third order
tensor linear equations

Mohammad Mahdi Izadkhah1∗

1Department of Computer Science, Faculty of Computer and Industrial Engineering,
Birjand University of Technology, Birjand, Iran

Abstract

In this paper, we present a direct dense method called three-term-tensor Sylvester, to
obtain the solution to a class of third order tensor linear equations. The proposed method
investigate process of solution without the explicit use of Kronecker form that is desirable for
low rank tensor equations. Numerical experiments illustrate the properties of the considered
algorithm.

Keywords: Tensors, Schur decomposition, Generalized Sylvester matrix equation
Mathematics Subject Classification [2010]: 65F10, 65F30, 15A24

1 Introduction
The literatures on tensors, actually about their analysis and the associated approximation meth-
ods, has grown tremendously in the past twenty years. Numerous different decompositions
of tensor equations have allowed the developments of various problem dependent strategies,
see [2–4] and references therein.

In this paper, we are interested in the computation of the unique solution X ∈ Rn×n×n to
the nonsingular system in the following tensor form

(H⊗A1 ⊗M1 +H⊗A2 ⊗M+H3 ⊗A3 ⊗M)vec(X) = b3 ⊗ b2 ⊗ b1, (1)

where all coefficient matrices are real and have the same n × n dimensions. Here ⊗ denotes
the Kronecker product (to be recalled later) and vec(X) stacks the components of the tensor
X one after the other. In particular, in (1) two terms share the same matrices, either M or H
(purposely in bold face), while all other matrices Ai, i = 1, 2, 3 and H3,M1 have no relation to
each other.

The numerical solution to (1) can be given in closed form by unfolding the 3-mode tensor
in one of the three directions. In particular, a tensor X ∈ Rn1×n2×n3 can be written using the
mode-1 unfolding as in [2]

X(1) = [X1, X2, . . . , Xn3], Xk = X::k ∈ Rn1×n2 , k = 1, 2, . . . , n3

∗Speaker. Email address: izadkhah@birjandut.ac.ir

1

M.M. Izadkhah

each Xk is called a frontal slice of tensor X , and X(1) is a matrix in Rn1×n2n3 . Some additional
standard notation needs to be recalled. The Kronecker product of two matrices X and Y is
defined in the block form as

X ⊗ Y =

X1,1Y · · · X1,n2Y
...

Xn1,1Y · · · Xn1,n2Y

 ,

where Xi,j denotes an element of X. Moreover, vec(X) is the operator stacking all columns of
the matrix X one after the other. In the case of third order tensors X , we will apply the vec(X)
operator to the mode-1 unfolding X(1), that is

vec(X) := vec(X(1)).

The reverse operation, for known dimensions of the vector x, will be denoted by mat(x, n1, n2),
so that x = vec(X)and X = mat(x, n1, n2). Similarly, X = tensor(1)(x, n1, n2, n3) will fold a
long vector x into a tensor X via the mode-1 unfolding.

A standard property of the Kronecker product that will be used repeatedly is the following

vec(AXB) = (BT ⊗A)vec(X), (2)

where BT denotes the real transpose of B. The aforementioned equation (2) allows one to go
back and forth between the vector and matrix presentation. Other properties used in the sequel
are from [1] as

i) (A⊗B)T = AT ⊗BT , ii) (A⊗B)(C ⊗D) = (AB ⊗ CD), iii) (A⊗B)−1 = A−1 ⊗B−1,

Also, Q∗ denotes the conjugate transpose of the complex matrix Q, while H−T = (H−1)T .
Least approaches try to take direct dense methods for low order tensor equations, without

the explicit use of the Kronecker product. Here we concentrate on special case of tensor equation
(1) motivated from [5], nonetheless appears to be a feasible algebraic formulation of a quite large
set of differential problems.

2 Three-Term-Tensor Sylvester method
In this section, we use the mode-1 unfolding related to the specific location of the repeated
matrices H and M in (1). The following Theorem provides the unique solution to (1) based on
the generalized Sylvester matrix equation.

Theorem 2.1. Let (H−1H3)
T = QRQ∗ be the Schur decomposition of (H−1H3)

T , and [γ1, . . . , γn] :=
bT3 H

−TQ. Using the mode-1 unfolding, the solution X to (1) is given by

X = tensor(1)(vec([Ẑ1Q
−1, . . . , ẐnQ

−1]), n, n, n),

where for j = 1, . . . , n, the matrix Ẑj solves the generalized Sylvester equation

M1ZAT
1 +MZ(Rj,jA

T
3 +AT

2) = b1γjb
T
2 −Mmat([ẑ1, . . . , ẑj−1]R1:j−1,j , n, n)A

T
3 ,

where Rj,j stands for the diagonal entries of the upper triangular matrix R, and R1:j−1,j denotes
the first j − 1 components of j-th column of R. We set mat([ẑ1, . . . , ẑj−1]R1:j−1,j , n, n) to be
empty array for j = 1.

2

Three-Term-Tensor Sylvester method for a class of third order tensor linear equations

Proof. Using (2) for the unfolded tensor we have

(A1 ⊗M1 +A2 ⊗M)X(1)H
T + (A3 ⊗M)X(1)H

T
3 = (b2 ⊗ b1)b

T
3

(A3 ⊗M)−1(A1 ⊗M1 +A2 ⊗M)X(1) + X(1)H
T
3 H

−T = (A3 ⊗M)−1(b2 ⊗ b1)b
T
3 H

−T

(A−1
3 A1 ⊗MM1 +A−1

3 A2 ⊗ I)X(1) + X(1)H
T
3 H

−T = (A−1
3 b2 ⊗M−1b1)b

T
3 H

−T

Using (H−1H3)
T = QRQ∗ and multiplying the equation by Q from the right, we get

(A−1
3 A1 ⊗MM1 +A−1

3 A2 ⊗ I)X(1)Q+ X(1)QR = (A−1
3 b2 ⊗M−1b1)b

T
3 H

−TQ

Let X(1)Q = [ẑ1, . . . , ẑn] and [γ1, . . . , γn] := bT3 H
−TQ. Thanks to the upper triangular form of

R, for the first column ẑ1 it holds

(A−1
3 A1 ⊗M−1M1 +A−1

3 A2 ⊗ I)ẑ1 + ẑ1R1,1 = (A−1
3 b2 ⊗M−1b1)γ1

For the subsequent columns j = 2, . . . , n, taking into account once again the triangular form of
R, we set wj−1 = [ẑ1, . . . , ẑj−1]R1:j−1,j so that

(A−1
3 A1 ⊗M−1M1 +A−1

3 A2 ⊗ I)ẑj + ẑjRj,j = (A−1
3 b2 ⊗M−1b1)γj − wj−1

Let us reshape each ẑj so that Ẑj = mat(ẑj , n, n). For j = 1, we can write

M−1M1Ẑ1 + Ẑ1(R1,1A
T
3 A

−T
1 +AT

2 A
−T
1) = M−1b1γ1b

T
2 A

−T
1

Analogously, for j = 2, . . . , n and letting Wj−1 = mat([ẑ1, . . . , ẑj−1]R1:j−1,j , n, n) , from (2.3) we
first obtain

M−1M1Ẑj(A
−1
3 A1)

T + Ẑj(Rj,jI + (A−1
3 A2)

T) = M−1b1γj(A
−1
3 b2)

T −Wj−1

or equivalently, for j = 2, . . . , n

M−1M1Ẑj + Ẑj(Rj,jA
T
3 A

−T
1 +AT

2 A
−T
1) = M−1b1γjb

T
2 A

−T
1 −Wj−1A

T
3 A

−T
1

Multiplying both sides by M (from the left) and by AT
1 (from the right), the result follows.

Based on the proof of Theorem 2.1, an explicit constructive way is provided to generate the
tensor solution, one slice at the time. The complete procedure is described in the algorithm
below, in the following called the Three-Term-Tensor Sylvester (T3 − Sylv) method.

Algorithm 2.2. T3 − Sylv

1. Input: Matrices A1, A2, A3,M1,M,H,H3 of size N × n, vectors b1, b2, b3 of length n.

2. For k = 1, . . . , n

Compute Q and R such that (H−1H3)
T = QRQ∗ (Schur decomposition)

Compute g = bT3 H
−TQ

Set F = M−1b1gkb
T
2 A

−T
1

If k > 1, Set Wk−1 = mat([ẑ1, . . . , ẑk−1]R1:k−1,k, n, n) and F = F −Wk−1A
T
3 A

−T
1

Solve M−1M1Ẑ + Ẑ(Rk,kA
T
3 A

−T
1 +AT

2 A
−T
1) = F to get Ẑk and ẑk = vec(Ẑk)

end

3

M.M. Izadkhah

3. Set X = tensor(1)(vec([Ẑ1Q
−1, . . . , ẐnQ

−1]), n, n, n)

4. Output: X solution to (1)
In practice, using appropriate transformations, the method is a nested Sylvester solver, which

treats one slice at the time, and updates the corresponding coefficient matrix and right-hand
side F . The solvability of the Sylvester equations is related to that of the original problem, and
in particular to the nonsingularity of A. The algorithm relies on the initial Schur decomposition,
which provides robust unitary transformations.

Moreover, for each slice, a matrix Sylvester equation needs to be solved, whose solution
also involves the Schur decompositions of the coefficient matrices, as a small scale computation
studied in [4]. Indeed, if some of the involved matrices are severely ill-conditioned, the solution
may lose accuracy.

3 Numerical experiments
In this section, we report some numerical experiments with the T3 − Sylv method. All experi-
ments were performed using Matlab R2015a on an Intel Core i7 Laptop with 8G RAM.
Example 3.1. To test the efficiency of the proposed method, we consider dense matrices with
random entries (taken from a uniform distribution in the interval (0, 1), Matlab function rand)
of increasing size n. Also, the same is used for the vectors b1, b2 and b3. We stress that the
Kronecker form of the problem would involve a dense matrix A of size n3 ×n3, which could not
even be stored.

Without difficulty, we observe that the method is able to solve a (random) structured dense
problem of size n3 = 16, 777, 216 in about CPUTime = 25 seconds. The CPU times in Table
1 show that the computational cost of the method approximately grows between six and ten
times as the dimension n doubles. However, going from n to 2n, the problem dimension in the
full space would grow from n3 to 23n3. Hence, the actual cost appears to grow linearly with
n3. Since data are dense, Gauss elimination on A would instead require O((n3)3) floating point
operations.

Table 1: CPU times of T3 − Sylv for increasing dimensions of the coefficient matrices, having
uniformly distributed random entries

n CPU Time
8 2.47e-04
16 4.35e-03
32 2.15e-02
64 1.14e-01
128 2.15e+00
256 2.53e+01

4 Conclusion
We have proposed three-term-tensor Sylvester method for solving a class of third order ten-
sor linear equations. The method relied on the Schur decomposition for solving a generalized
Sylvester matrix equation to obtain frontal slices od tensor solution, at each time. In fact, the
repeated presence of two matrices in the considered third order tensor linear equations make the
most of the method, without Kronecker form.

4

Three-Term-Tensor Sylvester method for a class of third order tensor linear equations

References
[1] G. Golub, C.F. Van Loan, Matrix Computations, 4th edn. The Johns Hopkins University

Press, Baltimore (2013).

[2] T.G., Kolda, B.W., Bader, Tensor decompositions and applications. SIAM Rev. 51 (2009)
455–500.

[3] H.G. Matthies, E. Zander, Solving stochastic systems with low-rank tensor compression.
Linear Algebra Appl. 436 (2012) 3819–3838.

[4] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev. 58(3)(2016)
377–441.

[5] V. Simoncini, Numerical solution of a class of third order tensor linear equations, Bollet.
dell’Union Matematica Italiana 13 (2020) 429-439.

5

	Introduction
	Three-Term-Tensor Sylvester method
	Numerical experiments
	Conclusion

