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Abstract

Let L be a real linear operator with a positive definite symmetric part M. In certain
applications, several problems of the form M ?N Y = G can be solved with less human or
computational effort than the original equation L ?N U = F . In this paper, the generalized
conjugate gradient method of Concus and Golub [Lecture Notes in Economics and Math-
ematical Systems 134, Springer-Verlag, New York, 1976] and Widlund [SIAM J. Numer.
Anal., 15 (1978), pp. 801-812] is extended for solving some tensor equations via Einstein
product. An example is also provided to show the efficiency of the proposed method. Finally,
some concluding remarks are given.
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1 Introduction

The generalized conjugate gradient method of Concus and Golub [2] and Widlund [3] is an
iterative method for solving a system of linear equations Ax = b when the coefficient matrix
A is real and has positive definite symmetric part M = (A + AT)/2. This method can be
summarized as follows:

Algorithm 1. Generalized Conjugate Gradient (GCG)

1. Let x0 be given and set x−1 = 0

2. For j = 0, 1, ... until convergence solve Mvj = b−Axj and compute ρj =< Mvj ,vj >

3. If j = 0 set ωj+1 = 1 else compute ωj+1 = [1 +
ρj
ρj−1

1

ωj
]−1

4. Compute xj+1 = xj−1 + ωj+1(vj + xj − xj−1),

where < y,x > denotes the Euclidean inner product.
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Herein, from [4] some definitions and notations are collected. Tensors are written in cal-
ligraphic font, e.g., A. Let N be a positive integer, an order N tensor A = (ai1...iN ) =
(A)i1...iN (1 ≤ ij ≤ Ij , j = 1, 2, ..., N) is a multidimensional array with I(I = I1...IN ) en-
tries. Each entry of A is denoted by ai1i2...iN . O with all entries zero denotes the zero tensor.
With this definition of tensors, matrices are tensors of order two where signified by bolded cap-
ital letters, e.g., A. As usual, R and C denotes the real and complex number field, respectively.
Let RI1×...×IN and CI1×...×IN be the set of order N , dimension I1 × I2 × ... × IN tensors over
R and C, respectively. Let N,M,L be the positive integers, A ∈ CI1×...×IN×K1×...×KM and
B ∈ CK1×...×KM×J1×...×JL . The Einstein product of A and B is defined by the operation ?M via

(A ?M B)i1...iN j1...jL =

KM∑
kM=1

...

K1∑
k1=1

ai1...iNk1...kM bk1...kM j1...jL .

Let A = (ai1...iN j1...jN ) ∈ CI1×...×IN×I1×...×IN , then Ai+1 = A ?N Ai, i = 1, 2, ..... Let B =
(bi1...iM j1...jN ) ∈ CJ1×...×JM×I1×...×IN be the conjugate transpose of A, where bi1...iM j1...jN =
āj1...jM i1...iN . The tensor B is denoted by A∗. When bi1...iM j1...jN = aj1...jM i1...iN , B is called the

transpose of A, denoted by AT. Trace of A is defined by tr(A) =
∑IN

iN=1 ...
∑I1

i1=1 ai1...iN i1...iN .

Inner product of two tensors X ,Y ∈ CI1×...×IN×J1×...×JM is defined by

< X ,Y >= tr(Y∗ ?N X ) =

JM∑
jM=1

...

J1∑
j1=1

IN∑
iN=1

...

I1∑
i1=1

xi1...iN j1...jM ȳj1...jM i1...iN ,

so the tensor norm that generated by this inner product is

||X || =
√
< X ,X > =

√√√√ JM∑
jM=1

...

J1∑
j1=1

IN∑
iN=1

...

I1∑
i1=1

|xi1...iN j1...jM |2,

which is the tensor Frobenius norm. A ∈ RI1×...×IN×I1×...×IN is said to be a diagonal tensor
if ai1...iN j1...jN = 0 for il 6= jl and l = 1, ..., N . A diagonal tensor I ∈ RI1×...×IN×I1×...×IN is an

identity tensor if ii1...iN j1...jN =
∏N
k=1 δikjk , where δij =

{
1, i = j
0, i 6= j.

2 Main results

In this paper we extend the GCG algorithm, named GCG-BTF, for solving the following tensor
equations (or multilinear systems) via Einstein product:

A ?N X = B, (1)

where A ∈ RI1×...×IN×I1×...×IN and X ,B ∈ RI1×...×IN .

Algorithm 2. Generalized Conjugate Gradient Based Tensor Form (GCG-BTF)

1. Let X0 be given and set X−1 = O.

2. For j = 0, 1, ... until convergence solve M ?N Vj = B −A ?N Xj and compute
ρj =<M ?N Vj ,Vj >

3. If j = 0 set ωj+1 = 1 else compute ωj+1 = [1 +
ρj
ρj−1

1

ωj
]−1
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4. Compute X = Xj−1 + ωj+1(Vj + Xj −Xj−1).

Let A = M− N , whence −N = (A − AT)/2 is the skew-symmetric part of A, and let
K =M−1 ?N N . Then the iterate Xj can be characterized as the unique element in the affine
Krylov-type subspace

X0 + Span{V0,K ?N V0,K2 ?N V0, ...,Kj−1 ?N V0} ≡ X0 + ϕj ,

satisfying the Galerkin condition

< Z,A ?N Ej >= 0 for all Z ∈ ϕj , (2)

where Ej = X − Xj . Moreover, it can be shown that

Xj = X + Pj(K) ?N E0, (3)

where Pj(µ) is an even (odd) polynomial of degree at most j for j even (odd) and Pj(1) = 1.
Notation. < Y,Z >M denotes the M-inner product <M ?N Y,Z > and ||Z||M denotes

the corresponding norm. Note that

< K ?N Y,Z >M=< N ?N Y,Z >= − < Y,N ?N Z >

= − <M ?N Y,M−1 ?N N ?N Z >= − < Y,K ?N Z >M,

so that K is skew-symmetric with respect to < ., . >M and < K ?N Z,Z >M= 0 for all Z.
We note that the Krylov-type sequence is completely specified by its first element V0. We

have worked exclusively with V0 =M−1 ?N R0, where Rj = B−A?N Xj . This is a very natural
choice especially when the norm of the operator K is small.

Remark. It can be shown that the iterate Xj generated by the GCG-BTF method is the
best approximation to X with respect to a certain j-dimensional affine subspace, but not with
respect to the affine Krylov-type subspace X0 + ϕj (unless Xj = X ).

Error bounds. It is not difficult to see that, use the best approximation property of the
iterates Xj , the error bound for the GCG-BTF method is as follows:

||Xj −X||M ≤ ||Qj(K) ?N (X0 −X )||M,

for any real polynomial Qj(µ) of degree at most j satisfying Qj(1) = 1 and Qj(−1) = (−1)j .

3 Numerical results

In this section, we give a numerical example to show the performance of the proposed algorithm.
All tests were carried out in double precision with a Matlab code and initial tensor X0 = O,
when the computer specifications are Microsoft Windows 10 Intel(R), Core(TM)i7-7500U, CPU
2.70 GHz, with 8 GB of RAM. All used codes came from the Matlab tensor toolbox developed
by Bader and Kolda [1]. We compared the proposed methods with CG-BTF, CGS-BTF and
Bi-CGSTAB-BTF algorithms, where the stopping criterion is ‖Rj‖ < 10−8.

We consider two-dimensional (2D) Poisson problem

−∇2v = f, in Ω = [0, 1]× [0, 1],
v = 0, on ∂Ω,

(4)

where f is a known function,

∇2v =
∂2v

∂x2
+
∂2v

∂y2
, (5)
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and v is unknown function.
Several problems in physics and mechanics are modeled by (4), where v represents, for

example, temperature, electromagnetic potential, or displacement of an elastic membrane fixed
at the boundary. We compute an approximation of the unknown function v(x, y) in (4). The
mesh points are obtained by discretizing the unit square domain with step sizes, ∆x in the

x-direction and ∆y in the y-direction. If we assume that ∆x = ∆y = h =
1

n+ 1
, after the

standard central difference approximations, we obtain the difference formula

4vij − vi−1j − vi+1j − vij−1 − vij+1 = h2fij , i, j = 1, 2, · · · , n. (6)

The higher order tensor representation of the 2D discretized Poisson problem (4) is

An ?2 V = F , (7)

where An ∈ Rn×n×n×n and V,F ∈ Rn×n are discretized on the unit square. The nonzeros entries

of the tensor block (A(2,4)
n )k=α,l=β are in the following five-point stencil

(A(2,4)
nα,β

)α,β =
4

h2
,

(A(2,4)
nα,β

)α−1,β = (A(2,4)
nα,β

)α,β−1 =
−1

h2
,

(A(2,4)
nα,β

)α+1,β = (A(2,4)
nα,β

)α,β+1 =
−1

h2
,

(8)

for α, β = 2, ..., n − 1 and F = 10 ∗ tenrand(n, n) ∈ Rn×n. The numerical results are depicted
in Figure 1 for n = 30, where in GCG-BTF method, we choose X1 = tenones(n, n) and the
obtained approximation of the inversion of M−1 using RAPID algorithm [4] is obtained for
solving M ?2 Vj = B −A ?2 Xj .
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Figure 1: Residual curves.

4



Generalized conjugate gradient method for solving multilinear systems

4 Conclusion

In this paper, the generalized conjugate gradient method is extended for solving tensor equation
A?NX = B. The proposed numerical example provided the efficiency of the GCG-BTF method.
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