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Abstract

This paper gives an answer by presenting of eigenvalues for real tridiagonal 3-Toeplitz
matrices of different order. It surveys the central results of the theory by finding roots
of a combination of Chebyshev polynomials of the second kind. This answer solves the
eigenproblem for integer powers of such matrices.
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1 Introduction

Toeplitz matrices are frequently used in many fields of science and engineering such as solving
the inverse of a matrix, systems of linear equations, problems in the field of sound propagation,
the stability of difference approximations to differential equations, etc. k-Toeplitz matrices are
tridiagonal matrices of the form A = [ai,j ]

n
i,j=1 (with n ≥ k) such that ai+k,k+j = ai,j (i, j =

1, 2, ..., n− k), so that they are k-periodic along the diagonals parallel to the main diagonal.
A Toeplitz matrix is a k-Toeplitz matrix when k = 1.
In this paper, we focus on the case of the form

An =



a1 b1
c1 a2 b2

c2 a3 b3
c3 a1 b1

c1 a2 b2
c2 a3 b3

. . . . . . . . .


∈ Rn×n. (1)

This matrix is an n × n real tridiagonal 3-Toeplitz matrices. The description of some explicit
expressions for eigenvalues of a tridiagonal 3-Toeplitz matrices is the main topic of this note.
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2 Main results
The first key idea of our work is the expressions for eigenvalues of a tridiagonal 3-Toeplitz
matrices by the following theorem:

Theorem 2.1. (Marcella’n and Petronilho [4]). Let An, n = 3, 4, 5, ..., be the irreducible
tridiagonal 3-Toeplitz matrix given by (1), where b1, b2, b3, c1, c2 and c3 are positive numbers.
Define the sequence {Sn}n≥0 of orthogonal polynomials associated with the matrices An as

S3k(x) = (b1b2b3)
−k{Pk(π3(x)) + b3c3(x− a2)Pk−1(π3(x))}, (2)

S3k+1(x) = b−1
1 (b1b2b3)

−k{(x− a1)Pk(π3(x)) + b1c1b3c3Pk−1(π3(x))}, (3)

S3k+2(x) = (b1b2)
−1(b1b2b3)

−k(x− ξ1)(x− ξ2)Pk(π3(x)), k = 0, 1, . . . , (4)

where ξ1 and ξ2 are the roots of the polynomial

(x− a1)(x− a2)− b1c1, (5)

and

π3(x) :=

∣∣∣∣∣∣
x− a1 1 1
b1c1 x− a2 1
b3c3 b2c2 x− a3

∣∣∣∣∣∣ . (6)

Then the eigenvalues λn,m of An are the zeros of Sn, and the corresponding eigenvectors vn,m

are given by

vn,m =


S0(λn,m)
S1(λn,m)

...
Sn−1(λn,m)

 , m = 1, 2, . . . , n. (7)

Define
Pn(x) = (b1b2b3c1c2c3)

n/2Un

(
x− b1c1 − b2c2 − b3c3

2
√
b1b2b3c1c2c3

)
, n = 0, 1, 2, . . . , (8)

where Un(x) is the Chebyshev polynomial of degree n of the second kind with
n ∈ N ∪ {−1, 0}.
All Chebyshev polynomials, among them Un(x), satisfy the three-term recurrence relations [3]:

Un+1(x) = 2xUn(x)− Un−1(x), (U−1(x) = 0, U0(x) = 1, U1(x) = 2x).

The sequence {Sk}k is an orthogonal polynomial sequence corresponding to a positive definite
case. So, the zeros are simple and interlace [3, 5], i.e., if {xk,j}kj=1 denotes the zeros of the
polynomial Sk, then xk,j < xk−1,j < xk,j+1, j = 1, 2, ..., k − 1.
When n = 3k+2, from Equation (4), the eigenvalues λ3k+2,m of A3k+2 (m = 1, 2, ..., 3k+2) are
λ3k+2,1 = ξ1, λ3k+2,2 = ξ2 in the solutions of the cubic equations

Q(λ) := π3(λ)−
[
b1c1 + b2c2 + b3c3 + 2

√
b1b2b3c1c2c3 cos

iπ

k + 1

]
= 0, i = 1, . . . , k. (9)

From (6)

π3(λ) = (λ− a1)(λ− a2)(λ− a2)− (b1c1 + b2c2 + b3c3)(λ− a3)

+b2c2(a1 − a3) + b3c3(a2 − a3) + b1c1 + b2c2 + b3c3, (10)
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and from Shengjin formulas are given in [6], we compute the roots of the cubic Equation (9).
The coefficients Q(λ) of Equation (9) are

q1 = 1, q2 = −(a1 + a2 + a3), q3 = a1a2 + a2a3 + a1a3 − b1c1 − b2c2 − b3c3,
q4 = a3b1c1 + a1b2c2 + a2b3c3 − a1a2a3 − 2

√
b1b2b3c1c2c3 cos

iπ
k+1 .

Let

∆1 = q22 − 3q1q3, ∆2 = q2q3 − 9q1q4, ∆3 = q23 − 3q2q4, ∆4 = ∆2
2 − 4∆1∆3.

Then we have

(1) If ∆1 = ∆2 = 0, Q(λ) has only one real triple root;
(2) If ∆ > 0, Q(λ) has one real root and a pair of conjugate imaginary roots;
(3) If ∆ = 0, Q(λ) has three real roots: one simple and the other double;
(4) If ∆ < 0, Q(λ) has three different real roots.

The corresponding eigenvectors vn,m are given by (7).

When n = 3k + 1, in Equation (3), the eigenvalues λ3k+1,m of A3k+1

(m = 1, 2, ..., 3k + 1) are the roots x of S3k+1(x) satisfy the equation

b−1
1 (b1b2b3)

−k{(x− a1)Pk(π3(x)) + b1c1b3c3Pk−1(π3(x))} = 0. (11)

With following (8) in Equation (11), we have s =
√
b1b3c1c3√
b2c2

.

If x is not a common root of Un−1

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

)
and a1 − x, then we conclude

Un

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

)
Un−1

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

) =
s

a1 − x
. (12)

Note 1. Let η0 < ξ1 < η1 < ξ2 < . . . < ηi−1 < ξi < ηi < ξi+1 < . . . < ηn−1 < ξn < ηn with
η0 = −∞, ηn = ∞, where ξ1, ξ2, . . . , ξn are the roots of Un(x), and η1, η2, . . . , ηn−1 are the
roots of Un−1(x) in Equation (12). Let Un(x)/Un−1(x) = pn,n−1(x), n ≥ 1 and p0,−1(x) = 1.
Next we denote g(x) = s/(a1 − x) that here s =

√
b1b3c1c3√
b2c2

.

Theorem 2.2. If s > 0, for some i in Equation (12) and Note 1, then there are precisely two
additional roots, exactly one lying in each of the intervals

(ηi−1, a1) and (a1, ηi).

If s < 0, then one or two additional roots of Equation (12) can be zero, in the interval (ηi−1, ηi).
Finally, the next elseif s = 0, the problem is solved easily by finding roots of Un(x).

Note that, here s > 0. Then by the results of Theorem 2.2, the function (12) has the same
roots as

h(x) ≡ (a1 − x)Un

(
π3(x)− b1c1 − b2c2 − b3c3

2
√
b1b2b3c1c2c3

)
− sUn−1

(
π3(x)− b1c1 − b2c2 − b3c3

2
√
b1b2b3c1c2c3

)
, (13)

3



M. Shams Solary

Figure 1: pn,n−1(x)

Figure 2: pn,n−1(x)
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The graph of pn,n−1(x)�� is shown in Fig. 1. Also Fig. 2 shows pn,n−1(x) in the interval
(ξj−1, ξj).
For more details see [5].
Now, we have the roots of the following function by to approximate function h(x) by Chebyshev
interpolation for every interval (ηi−1, ηi), i = 1, . . . , n, then use Chebyshev companion matrix
to find roots.
To increase the accuracy, we can apply Chebfun for this work [3]. Chebfun finds roots with a
global rootfinding capability by a method that shows in [5].

When n = 3k, from Equation (2), the eigenvalues λ3k,m of A3k (m = 1, 2, ..., 3k) are the roots x
of S3k(x) satisfy the equation

(b1b2b3)
−k{Pk(π3(x)) + b3c3(x− a2)Pk−1(π3(x))} = 0. (14)

If x is not a common root of Un

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

)
and a2 − x, then we conclude

Un−1

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

)
Un

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

) =

√
b1b2c1c2√

b3c3(a2 − x)
. (15)

Here, suppose Un−1(x)/Un(x) = pn−1,n(x), n ≥ 1 and g(x) = s/(a2 − x) that s =
√
b1b2c1c2√
b3c3

.
Where ξ1 < η1 < ξ2 < . . . < ηi−1 < ξi < ηi < ξi+1 < . . . < ηn−1 < ξn.
ξ1, ξ2, . . . , ξn are the roots of Un(x) and η1, η2, . . . , ηn−1 are the roots of Un−1(x).
Now, we apply Theorem 2.2 for finding eigenvalues of matrix (1) when n = 3k.

We show another way to the problem concerning the study of the eigenvalues of the sequences
of matrices defined by (1), based on some results in [1,2]. We will study the case when the order
n = 3k of the matrix An in (1). Then An is the block Toeplitz matrix

An =



B0 B1

B−1 B0 B1

B−1 B0 B1

. . . . . . . . .
. . . . . . B1

B−1 B0


,

generated by the 3× 3 matrix valued polynomial

f(x) := B0 +B1e
ix +B−1e

−ix

with

B0 =

 a1 b1 0
c1 a2 b2
0 c2 a3

 , B1 =

 0 0 0
0 0 0
b3 0 0

 , B−1 =

 0 0 c3
0 0 0
0 0 0

 .

However, from Theorem 2.1, we know b1, b2, b3, c1, c2 and c3 are positive numbers and so it
is well-known that, under such conditions, An is similar to the block Toeplitz matrix Ân by
diagonal transformations, that is generated by the 3× 3 matrix valued polynomial

f̂(x) := B̂0 + B̂1e
ix + B̂−1e

−ix
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with

B̂0 =

 a1
√
b1c1 0√

b1c1 a2
√
b2c2

0
√
b2c2 a3

 , B̂1 =

 0 0 0
0 0 0√
b3c3 0 0

 , B̂−1 =

 0 0
√
b3c3

0 0 0
0 0 0

 .

There are some papers for the Evaluation of the Eigenvalues of a Banded Toeplitz Block Matrix,
such as [1, 2].

3 Conclusion
In this note we have considered a novel analysis review of spectral problem involving a tridiagonal
3-Toeplitz matrix for the cases n = 3k+2, n = 3k+1 and n = 3k with some details on explicitly
or implicitly tools.
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