MAPS PRESERVING THE λ -LIE PRODUCT OF OPERATORS

ROJA HOSSEINZADEH

ABSTRACT. Let \mathcal{A} be a standard operator algebra on a Banach space \mathcal{X} with dim $\mathcal{X} \geq 2$. In this paper, we characterize the forms of additive maps on \mathcal{A} which strongly preserve the square zero of λ -Lie product of operators, i.e., if $\phi : \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map which satisfies

$$[A, B]^2_{\lambda} = 0 \Rightarrow [\phi(A), B]^2_{\lambda} = 0,$$

for every $A, B \in \mathcal{A}$ and for a scalar number λ with $\lambda \neq -1$, then it is shown that there exists a function $\sigma : \mathcal{A} \to \mathbb{C}$ such that $\phi(A) = \sigma(A)A$, for every $A \in \mathcal{A}$.

1. INTRODUCTION

In last decade, Many mathematician research on the preserving problems. Specially, maps preserving a certain property of products of elements are considered. We point to some of them close to our purpose.

Let \mathcal{A} be a Banach algebra, $A, B \in \mathcal{A}$ and λ be a scalar. $AB + \lambda BA$ is said to be the λ -Lie product of A and B and is denoted by $[A, B]_{\lambda}$. λ -Lie product is said to be Jordan product and Lie product, whenever $\lambda = 1$ and $\lambda = -1$, respectively. Lie product is denoted by [A, B], too. Moreover, triple Jordan product A and B is defined as ABA. These products play rather important role in mathematical physics.

In [3], authors consider the maps strongly preserve the η -Lie product, that is $\phi(A)\phi(P) + \eta\phi(P)\phi(A) = AP + \eta PA$, for every A, some idempotent P and some scalar η .

²⁰⁰⁰ Mathematics Subject Classification. 46J10, 47B48.

Key words and phrases. Preserver problem, Standard operator algebra, λ -Lie product, Lie product.

Let $\mathcal{B}(\mathcal{X})$ be the algebra of all bounded linear operators on a Banach space \mathcal{X} . Recall that a standard operator algebra on X is a norm closed subalgebra of $\mathcal{B}(\mathcal{X})$ which contains the identity and all finite rank operators. In [2], authors characterize the form of unital surjective maps on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of product of operators, in both directions. Also in [4], authors characterize the form of linear surjective maps on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of either products of operators or triple Jordan products of operators. In [1], Authors characterize the form of linear surjective maps on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of Jordan products of operators.

We say that a map $\phi : \mathcal{A} \longrightarrow \mathcal{A}$ strongly preserves the square zero of λ -Lie product of operators whenever

$$[A, B]^2_{\lambda} = 0 \Rightarrow [\phi(A), B]^2_{\lambda} = 0,$$

for every $A, B \in \mathcal{A}$.

In this paper, we characterize the forms of additive maps which strongly preserve the square zero of λ -Lie products of operators. Our main result is the following theorem.

Theorem 1.1. Assume that \mathcal{A} is a standard operator algebra on a Banach space \mathcal{X} with dim $\mathcal{X} \geq 2$. Let $\phi : \mathcal{A} \longrightarrow \mathcal{A}$ be an additive map which satisfies

$$[A, B]^2_{\lambda} = 0 \Rightarrow [\phi(A), B]^2_{\lambda} = 0,$$

for every $A, B \in \mathcal{A}$ and for a scalar number λ with $\lambda \neq -1$. Then there exists a function $\sigma : \mathcal{A} \to \mathbb{C}$ such that $\phi(A) = \sigma(A)A$, for every $A \in \mathcal{A}$.

2. Proofs

First we recall some notations. We denote by \mathcal{X}^* , the dual space of \mathcal{X} . For every nonzero $x \in \mathcal{X}$ and $f \in \mathcal{X}^*$, the symbol $x \otimes f$ stands for the rank one linear operator on \mathcal{X} defined by $(x \otimes f)y = f(y)x$ for any $y \in \mathcal{X}$. Note that every rank one operator in $\mathcal{B}(\mathcal{X})$ can be written in this way. We denote by $\mathcal{F}_1(\mathcal{X})$ the set of all rank one operators

 $\mathbf{2}$

in $\mathcal{B}(\mathcal{X})$. The rank one operator $x \otimes f$ is idempotent if and only if f(x) = 1 and is nilpotent if and only if f(x) = 0.

To prove the main theorem, we must first prove the following results.

Proposition 2.1. Let $A \in \mathcal{A}$, $x \in \mathcal{X}$, $f \in \mathcal{X}^*$ such that $f(x) \neq 0$ and $\lambda \neq 0, -1$. Then $[A, x \otimes f]^2_{\lambda} = 0$ if and only if one of the following statements occurs:

(i) $Axf(Ax) = -\lambda xf(A^2x)$ and $Axf(x) = -\lambda xf(Ax)$. (ii) fA = 0.

In the following lemmas, assume $\phi : \mathcal{A} \longrightarrow \mathcal{A}$ is a map which satisfies

$$[A, B]^2_{\lambda} = 0 \Rightarrow [\phi(A), B]^2_{\lambda} = 0,$$

for every $A, B \in \mathcal{A}$ and for a scalar number λ with $\lambda \neq 0, -1$.

Lemma 2.2. ker $A \subseteq \ker \phi(A)$, for every $A \in \mathcal{A}$.

Next assume that ϕ is additive.

Lemma 2.3. $\phi(A) = 0$ or $\phi(A) = \kappa(A)A$, for every rank one operator A, where $\kappa : \mathcal{A} \to \mathbb{C}$ is a function.

References

- 1. L. Fang, *Linear maps preserving the idempotency of Jordan products of operators*, Electronic Journal of Linear Algebra, **22** (2011) 767-779.
- L. Fang, G. Ji, Y. Pang, Maps preserving the idempotency of products of operators, Linear Algebra Appl., 426 (2007) 40-52.
- A. Taghavi, F. Kolivand, H. Rohi, A note on strong η -Lie products preserving Maps on some algebras, Mediterranean Journal of Math., 14 (2017) 1285-1292.
- M. Wang, L. Fang, G. Ji, Y. Pang, Linear maps preserving idempotency of products or triple Jordan products of operators, Linear Algebra Appl., 429 (2008) 181-189.

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar, Iran.

Email address: ro.hosseinzadeh@umz.ac.ir