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Abstract

In this manuscript, we introduce a new nonstandard finite difference (NSFD) scheme to
approximate solution of the coronavirus disease 2019 (COVID–19) model. In the beginning,
the positivity and boundedness of solution of the COVID–19 model are discussed. The
stability analysis of the equilibrium points the proposed COVID–19 model are then analyzed.
Lastly, to ascertain the efficacy and accuracy of the suggested NSFD scheme, some numerical
results are provided.
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1 Introduction

Mathematical modelling plays a basic role in predicting and controlling present and future epi-
demics. Some patients with pneumonia of unidentified cause appeared in some medical institu-
tions in December 2019 which happened in China. The World Health Organization (WHO) has
announced the outbreak COVID–19 as a pandemic on March 2019. As of the end of April 2020,
more than 2 millions COVID–19 cases and 200 thousand deaths have been reported from more
than 200 countries. Medicine is continuously evolving in terms of refining, revising and discover-
ing new knowledge about COVID–19. To bock the spread of the virus, there are some strategies
such as citywide lock down, traffic halt, community management and social distance that have
been adapted by the governments some countries in the world. In many cases, mathematical
modelling of the COVID–19 can be described by a nonlinear system of ordinary differential
equations (ODEs), (see [1, 3] for more details). A very few numbers of nonlinear ODEs can
be solved by an analytical solution. Most of these ODEs cannot be solved by the well-known
analytical method suitably. For this reason, various numerical methods were discussed to solve
such ODEs. In this work, in order to approximate the solution of the COVID–19 model, we will
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construct an efficient NSFD scheme which is positive. A sensible model for the COVID–19 at
time t can be described by the following initial value problem

dS

dt
= A− dS − βSI − γ,

dI

dt
= βSI − dI,

dR

dt
= γ − dR,

S(0) = S0, I(0) = I0, R(0) = R0.

(1)

In this model, S(t) is the number of the susceptible individuals at time t, I(t) stands the
infective individuals at time t and R(t) denotes the recovered individuals at time t. Here, the
death rates of the susceptible, the infective and the recovered are the same which is denoted by
d. Also, the birth rate of the susceptible is A and the susceptible become the infective at a rate
βSI where β is the contact rate. Moreover, the susceptible individuals become the recovered
by the constant rate γ which is assumed that A > γ. This paper is structured as follows.
Positivity and boundedness the solution of model (1) are proved in Section 2. Stability analysis
of the equilibrium points of proposed COVID–19 model are investigated in Section 3. Section
4, is devoted to the study of an efficient NSFD scheme for the numerical solution of proposed
COVID–19 model. Finally, numerical results are given in Section 5.

2 Positivity and boundedness

In this part, we want to prove positivity and boundedness of the solution model (1).

Theorem 2.1. If A > γ and S(0), I(0), R(0) > 0, then for all t ≥ 0, S(t), I(t) and R(t) > 0.

Proof. Since the SR-coordinate plane is invariant under the flows of system, hence for all t ≥ 0,
I(t) > 0. Let C = {t ≥ 0|S(t) < 0} and D = {t ≥ 0|R(t) < 0}. We will show that C = ∅.
Suppose that C 6= ∅ and C0 = inf(C), therefore S(C0) = 0. Since S(0) > 0, thus C0 > 0. By
assumption, C0 = inf(C) it follows that S(t) ≥ 0, for all t ∈ [0, C0]. This implies that from the
third equation of the system (1), S′(C0) = A − γ > 0. Hence, there exists ε > 0, such that
S′(t) > 0, for all t ∈ (C0−ε, C0+ε). Therefore, for all t ∈ (C0, C0+ε), S(t) > S(C0) = 0, which
contradicts C0 = inf(C). By a similar argument, we can show that R(t) ≥ 0, for all t ≥ 0.

In order to prove the boundedness of solution model (1), we first state the following propo-
sition.

Proposition 2.2. Let K(t) : [0,+∞) −→ R be a derivative function such that K(t) ≥ 0 for all
t ≥ 0. If α > 0, β ∈ R, such that K ′(t) + αK(t) ≤ β, for every t ≥ 0, then K(t) ≤ K(0) + β

α .

Lemma 2.3. If A ≥ γ, then for all t ≥ 0, we have S(t) + I(t) +R(t) ≤ S(0) + I(0) +R(0) + A
d .

Proof. Define K(t) = 1
A(S(t)+I(t)+R(t)), hence K ′(t)+dK(t) ≤ 1. It follows from Proposition

2.2 that K(t) ≥ K(0) + 1
d . This establishes the desired result.

3 Stability analysis of the COVID–19 model

The equilibrium points of the model (1) are given by E1 = (A−γd , 0, γd ), E2 = ( dβ ,
A− d

2

β
−γ

d , γd ).

Theorem 3.1. The system (1) is
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(i) locally asymptotically stable around E1 if γ < A < d2

β .

(ii) locally asymptotically stable around E2 if β
d (A− γ)− d > 0.

Proof. The variational matrix of system (1) corresponding to any arbitrary equilibrium point
(S∗, I∗, R∗) can be expressed as

J(S∗, I∗, R∗) =

−d− βI∗ −βS∗ 0
βI∗ βS∗ − d 0
0 0 −d

 .

At equilibrium point E1, The variational matrix is

J(E1) =

−d −β
d (A− γ) 0

0 β
d (A− γ)− d 0

0 0 −d

 .

The corresponding eigenvalues are λ1 = −d, λ2 = β
d (A − γ) − d and λ3 = −d. Therefore, the

equilibrium point E1 is locally asymptotically stable if and only if β
d (A − γ) − d < 0. At the

equilibrium point E2, The variational matrix is

J(E2) =

−d− βI1 −d 0
βI1 0 0
0 0 −d

 ,

where I1 = 1
d(A− d2

β − γ). The characteristic equation the above matrix is P (λ) = (λ+ d)(λ2 +
(d + βI1)λ + dβI1). One eigenvalue of the above Jacobian matrix is λ1 = −d. Observe that if
I1 > 0 then all of roots the polynomial P ∗(λ) = λ2 + (d+βI1)λ+ dβI1, are negative. Hence the
equilibrium point E2 is locally asymptotically stable.

4 A new NSFD scheme for the COVID–19 model

The NSFD schemes were firstly introduced by Mickens. In order to introduce the general aspect
of a NSFD scheme consider the following initial value problem

X ′(t) = f(X(t)), X(t0) = X0. (2)

Suppose that a discretization tk = kh, is given. A NSFD scheme for the problem (2) is con-
structed by the following two steps (see for instance [2]).

(i) The first order derivative in the initial value problem (2) at time step t = tk is replaced

by a discrete form X ′(tk) ≈ Xk+1−Xk
φ(h) , where Xk is an approximation of X(tk) and the

denominator function φ(h) satisfies the condition φ(h) = h+O(h2) with 0 < φ(h) < 1.

(ii) The linear and nonlinear terms in the initial value problem (2) can be replaced by nonlocal
discrete approximations.

Based on the Mickens rules, a NSFD scheme for the COVID–19 model (1) can be written as

Sk+1 − Sk
φ

= A− γ − dSk+1 − βSk+1Ik,

Ik+1 − Ik
φ

= βSk+1Ik − dI,
Rk+1 −Rk

φ
= γ − dRk+1,

(3)
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where φ(h) = edh−1
d . A simple computation shows that

Sk+1 =
(A− γ)φ+ Sk
1 + dφ+ βφIk

,

Ik+1 =
(1 + βφSk)Ik

1 + dφ
,

Rk+1 =
γφ+Rk
1 + dφ

.

(4)

Proposition 4.1. If S0, I0 and R0 > 0, then for all stepsize h, the values Sk, Ik and Rk are
always positive.

5 Simulation results

In this part, the numerical solutions of the proposed NSFD scheme on the two cases are pre-
sented. At the first simulation, we choose the parameter values A = 0.5, d = 0.3, β = 0.5 and
γ = 0.21 with the initial condition S0 = 25, I0 = 30 and R0 = 20 for simulating time 200 and
stepsize h = 0.4. Figure 1 confirms that the NSFD scheme (4) converges to the equilibrium
point E = (0.6, 0.366, 0.7). In Figure 2, we plot the behaviour of the NSFD scheme (4) for the
parameter values A = 0.5, d = 0.7, β = 0.5 and γ = 0.21 with choosing stepsize h = 2 and
the initial condition S0 = 25, I0 = 30 and R0 = 20. The Figure 2 shows that (Sk, Ik, Rk) ap-
proaches the equilibrium point E = (0.41, 0, 0.3). The results show that the numerical solutions
of the proposed NSFD schemes preserves the main properties of the COVID–19 model such as,
positivity and stability, even for large stepsize h.

6 Concluding remarks

In this work, we studied an efficient NSFD scheme for numerical solutions for the COVID–19
model. We portrayed the simulation results in Figures 1–2, which indicate the new NSFD scheme
preserved the positivity and stability properties of the COVID–19 model, even for choosing the
large stepsize h. As a future research work, we can focus on the fractional–order COVID–
19 model and obtain an efficient NSFD scheme which preserves the positivity and stability
properties of the fractional–order COVID–19 model.

Figure 1: Numerical simulation with h = 0.4 for the NSFD scheme (3).
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Figure 2: Numerical simulation with h = 2 for the NSFD scheme (3).
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