

Linear Algebra

and its Applications

On reduced minimum modulus preservers

Sepideh Haji Ghasemi^{1*} and Shirin Hejazian²

^{1,2}Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Suppose $\gamma(\cdot)$ denotes the reduced minimum modulus in a Banach algebra. We show that a continuous surjective linear map from a unital Banach algebra $\mathcal A$ onto a C^* -algebra $\mathcal B$ satisfying $\gamma(\varphi(a)\varphi(b))=\gamma(ab)$ $(a,b\in\mathcal A)$, makes $\mathcal A$ to be a C^* -algebra *-isomorphic to $\mathcal B$ up to multiplication by a central invertible element. If $\mathfrak B(H)$ is the C^* -algebra of all bounded linear operators on a Hilbert space H, we characterize surjective maps φ on $\mathfrak B(H)$ (with no linearity and continuity assumption) preserving the reduced minimum modulus of operator products.

Keywords: reduced minimum modulus, preserver maps, operators on a Hilbert space Mathematics Subject Classification [2010]: 15A86, 47A05, 47B49

1 Introduction

Throughout the paper all Banach spaces are assumed on the complex field. For a given Banach space X, S(X) and X^* denote the unit sphere of X and the dual of X, respectively, and $\mathfrak{B}(X)$ denotes the Banach algebra of all bounded linear operators on X. For $T \in \mathfrak{B}(X)$, R(T) and $\ker(T)$ denote the range and the null space of T, respectively. The unit circle in $\mathbb C$ will be denoted by $\mathbb T$. The reduced minimum modulus of an operator $T \in \mathfrak{B}(X)$ is defined by

$$\gamma(T) := \begin{cases} \inf\{\|Tx\| : \operatorname{dist}(x, \ker(T)) \ge 1\} & \text{if } T \ne 0, \\ \infty & \text{if } T = 0. \end{cases}$$
 (1)

 $T \in \mathfrak{B}(X)$, $\gamma(T) > 0$ if and only if R(T) is closed (see [6, Part 10, Chapter II]). It is also defined for Banach algebra elements. Let \mathcal{A} be a Banach algebra. For $a \in \mathcal{A}$, let L_a , R_a and $\sigma(a)$ denote the left and right multiplication operators by a and the spectrum of a, respectively. Harte and Mbekhta [5] considered the left and right conorm (reduced minimum modulus) of $a \in \mathcal{A}$ as follows

$$\gamma^{left}(a) = \gamma(L_a) = \inf\{\|ax\| : \operatorname{dist}(x, \ker(L_a)) \ge 1\},\$$

where $\ker(L_a) = \{x \in \mathcal{A} : ax = 0\}$. Similarly,

$$\gamma^{right}(a) = \gamma(R_a) = \inf\{\|xa\| : \operatorname{dist}(x, \ker(R_a)) \ge 1\},\$$

and $\ker(R_a) = \{x \in \mathcal{A} : xa = 0\}$. The reduced minimum modulus of $a \in \mathcal{A}$ is defined by $\gamma(a) := \gamma(L_a)$. If \mathcal{A} is a C^* -algebra, $\gamma(L_a) = \gamma(R_a)$ (see [5, Theorem 4]). It is proved that if

^{*}Speaker. Email address: sepide68ghasemi@gmail.com

a is invertible then $\gamma(a) = ||a^{-1}||^{-1}$, see [5]. Suppose $\operatorname{Lan}(\mathcal{A})$ and $\operatorname{Ran}(\mathcal{A})$ denote the left and right annhilators of \mathcal{A} , respectively. Obviously, $a \in \operatorname{Lan}(\mathcal{A})$ if and only if $L_a = 0$ if and only if $\gamma(a) = +\infty$. Let \mathcal{A} be a Banach algebra with a right (resp. left) approximate identity (e.g. a C^* -algebra), then $\operatorname{Lan}(\mathcal{A}) = \{0\}$ (resp. $\operatorname{Ran}(\mathcal{A}) = \{0\}$). So, for $a \in \mathcal{A}$, $\gamma(a) = +\infty$ if and only if a = 0. Also, if \mathcal{A} is a C^* -algebra, then

$$\gamma(a)^2 = \inf\{\lambda : \lambda \in \sigma(a^*a) \setminus \{0\}\}$$
 (2)

for all $a \in \mathcal{A}$, [5, Theorem 4]. Consequently, $\gamma(a) = \gamma(a^*a)^{\frac{1}{2}} = \gamma(aa^*)^{\frac{1}{2}} = \gamma(a^*)$. So, $\gamma(a)^2 = \gamma(a^2)$ whenever $a = a^*$. Moreover, if $u, v \in \mathcal{A}$ are unitary elements, then by definition $\gamma(uav) = \gamma(av)$ for all $a \in \mathcal{A}$. However, $\gamma(av) = \gamma(v^*a^*) = \gamma(a^*) = \gamma(a)$. Therefore, $\gamma(uav) = \gamma(a)$ for all $a \in \mathcal{A}$.

Let H be a Hilbert space. We denote by $\mathfrak{R}_1(H)$ the set of all rank one operators on H. We recall that every rank one operator T in $\mathfrak{B}(H)$ is of the form $T=x\otimes y$ for some $x,y\in H$, and $(x\otimes y)^*=y\otimes x$. So, $(x\otimes y)^*(x\otimes y)=(y\otimes x)(x\otimes y)=\|x\|^2y\otimes y$. Thus, $\sigma((x\otimes y)^*(x\otimes y))=\{0,\|x\|^2\|y\|^2\}$. Since $\mathfrak{B}(H)$ is a C^* -algebra, we have $\gamma(x\otimes y)=\|x\|\|y\|$.

We study surjective maps preserving the reduced minimum modulus of products. First, we assume that \mathcal{A} is a unital Banach algebra topologically generated by its idempotents, that is \mathcal{A} is the norm closure of its subalgebra generated by idempotents. If \mathcal{B} is a C^* -algebra, and $\varphi: \mathcal{A} \to \mathcal{B}$ is a surjective continuous linear map satisfying $\gamma(ab) = \gamma(\varphi(a)\varphi(b))$ for all $a,b \in \mathcal{A}$, then we show that \mathcal{B} is unital, $\varphi(1)$ is a central invertible element in \mathcal{B} and $\varphi(1)^{-1}\varphi$ is an isomorphism. We also show that \mathcal{A} is a C^* -algebra, *-isomorphic to \mathcal{B} . Then, we assume that H is a complex Hilbert space of dimension greater than 2 and study surjective maps (with no linearity and continuity assumption) on $\mathfrak{B}(H)$ preserving the reduced minimum modulus of operator products. We show that a surjective map φ on $\mathfrak{B}(H)$ preserves the reduced minimum modulus of products if and only if φ is a linear or conjugate linear *-automorphism multiplied by a partial isometry. More precisely, $\varphi(T) = U_T \psi(T) = \psi(T) V_T^*$ for all $T \in \mathfrak{B}(H)$, where ψ is a linear or conjugate linear *-automorphism and U_T , V_T are partial isometries on $\overline{R(\psi(T))}$ and $\overline{R(\psi(T)^*)}$, respectively. Finally, we study surjections on $\mathfrak{B}(H)$ preserving the reduced minimum modulus of Jordan triple products of operators.

2 Preserving reduced minimum modulus of products on Banach algebras

If \mathcal{A} and \mathcal{B} are Banach algebras with $Lan(\mathcal{B}) = \{0\}$ and $\varphi : \mathcal{A} \to \mathcal{B}$ is a map satisfying

$$\gamma(\varphi(a)\varphi(b)) = \gamma(ab) \quad (a, b \in \mathcal{A}), \tag{3}$$

then obviously, for $a, b \in \mathcal{A}$, $ab = 0 \Rightarrow \varphi(a)\varphi(b) = 0$. Thus preserving zero product plays an important role in our arguments.

Lemma 2.1. Let \mathcal{A} be a unital Banach algebra which is topologically generated by its idempotents. Suppose \mathcal{B} is a C^* -algebra and $\varphi: \mathcal{A} \to \mathcal{B}$ is a surjective continuous linear map preserving zero products in both directions. Then,

- (i) φ is injective.
- (ii) \mathcal{B} is unital, $\varphi(1)$ is a central invertible element and $\varphi(1)^{-1}\varphi$ is an isomorphism.

Proof. It is proved that φ is injective and [2, Lemma 2.1 and Theorem 2.2] leads to (ii).

Remark 2.2. We recall that if \mathcal{A} is a Banach algebra and Φ is an isomorphism from \mathcal{A} onto a C^* -algebra \mathcal{B} (which is automatically continuous), then it follows from defining $a^* = \Phi^{-1}(\Phi(a)^*)$ and $||a||_0 = ||\Phi(a)||$ ($a \in \mathcal{A}$) that $(\mathcal{A}, *, ||\cdot||_0)$ is a C^* -algebra. Being isomorphic to \mathcal{B} , the Banach algebra \mathcal{A} is semisimple and so $||\cdot||_0$ is equivalent to the original norm on \mathcal{A} , and the two norms coincide if and only if Φ is an isometry.

In the following theorem we show that if \mathcal{A} and \mathcal{B} satisfy the conditions of Lemma 2.1 and if $\varphi : \mathcal{A} \to \mathcal{B}$ is a continuous surjective linear map satisfying (3), then \mathcal{A} is a C^* -algebra with respect to its original norm, which is *-isomorphic to \mathcal{B} .

Theorem 2.3. Let \mathcal{A} be a unital Banach algebra which is topologically generated by its idempotents. Suppose \mathcal{B} is a C^* -algebra and $\varphi: \mathcal{A} \to \mathcal{B}$ is a surjective continuous linear map satisfying

$$\gamma(\varphi(a)\varphi(b)) = \gamma(ab). \quad (a, b \in \mathcal{A})$$

Then, A is a C^* -algebra which is *-isomorphic to \mathcal{B} .

Proof. Since φ satisfies (3), it preserves zero products in both directions. So by Lemma 2.1, φ is injective, \mathcal{B} is unital, $\varphi(1)$ is a central invertible element and $\Psi: \mathcal{A} \to \mathcal{B}$ defined by $\Psi(a) = \varphi(1)^{-1}\varphi(a)$ ($a \in \mathcal{A}$) is an isomorphism. By using [1, Lemma 4.1], one can see that \mathcal{A} is a C^* -algebra and Ψ is a *-isomorphism.

3 Maps preserving reduced minimum modulus of operator products

Let H be a complex Hilbert space of dimension ≥ 3 and let $\mathcal{U}(H)$ denote the set of unitaries on H. In the sequel, we describe a surjective (with no linearity and continuity assumption) map $\phi: \mathfrak{B}(H) \to \mathfrak{B}(H)$ satisfying

$$\gamma(\phi(T)\phi(S)) = \gamma(TS) \quad (T, S \in \mathfrak{B}(H)). \tag{4}$$

As $\mathfrak{B}(H)$ is a C^* -algebra, (4) implies that ϕ preserves zero product. In addition, $\gamma(p) = \inf\{\lambda : \lambda \in \sigma(p^*p) \setminus \{0\}\}\}^{\frac{1}{2}} = 1$ for all projections $p \in \mathfrak{B}(H)$. Particularly, $\gamma(.)$ is constant on the set of all rank one projections. So, we have the same characterization as in [3, Theorem 2.3] on $\mathfrak{R}_1(H)$. Hence by a similar discussion leading to [3, Theorem 3.2], we see that a surjective map ϕ on $\mathfrak{B}(H)$ satisfies (4) if and only if there exist a unitary or an anti-unitary U_0 in $\mathfrak{B}(H)$ and functions $h_1, h_2 : \mathfrak{B}(H) \to \mathcal{U}(H)$ satisfying $h_1(T)T = Th_2(T)$ for all $T \in \mathfrak{B}(H)$, such that

$$\phi(T) = U_0 h_1(T) T U_0^* = U_0 T h_2(T) U_0^*, \tag{5}$$

for all $T \in \mathfrak{B}(H)$.

Here by using properties of γ , we are going to find further necessary and sufficient conditions for ϕ to satisfy (4). To prove our main results we need the following Lemma.

Lemma 3.1. Let $A, B \in \mathfrak{B}(H)$. Then the following statements are equivalent.

- (i) $\gamma(AT) = \gamma(BT)$ for all $T \in \mathfrak{B}(H)$.
- (ii) $\gamma(AT) = \gamma(BT)$ for all $T \in \mathfrak{R}_1(H)$.
- (iii) |A| = |B|.

The following statements are also equivalent.

- (i)' $\gamma(TA) = \gamma(TB)$ for all $T \in \mathfrak{B}(H)$.
- (ii)' $\gamma(TA) = \gamma(TB)$ for all $T \in \mathfrak{R}_1(H)$.
- $(iii)' |A^*| = |B^*|.$

We can state the following proposition by applying (5) and Lemma 3.1.

Proposition 3.2. Let H be a complex Hilbert space with $\dim H \geq 3$, and $\phi : \mathfrak{B}(H) \to \mathfrak{B}(H)$ a surjective map. Then ϕ satisfies (4) if and only if there exists a linear or conjugate linear *-automorphism $\psi : \mathfrak{B}(H) \to \mathfrak{B}(H)$ such that $|\phi(T)| = |\psi(T)|$ and $|\phi(T)^*| = |\psi(T)^*|$ for all $T \in \mathfrak{B}(H)$.

The following Lemma and Proposition 3.2 leads to the next Theorem.

Lemma 3.3. Let $T \in \mathfrak{B}(H)$ and U be a partial isometry on $\overline{R(T)}$. Then, $\gamma(UTS) = \gamma(TS)$ for all $S \in \mathfrak{B}(H)$.

Theorem 3.4. Let H be a complex Hilbert space with $dimH \geq 3$, and $\phi : \mathfrak{B}(H) \to \mathfrak{B}(H)$ a surjective map. Then ϕ satisfies (4) if and only if

$$\phi(T) = U_T \psi(T) = \psi(T) V_T^* \quad (T \in \mathfrak{B}(H)),$$

where ψ is a linear or conjugate linear *-automorphism on $\mathfrak{B}(H)$ and for each $T \in \mathfrak{B}(H)$, U_T , V_T are partial isometries on $\overline{R(\psi(T))}$, $\overline{R(\psi(T)^*)}$, respectively. As a consequence, there is a unitary or anti-unitary operator U on H such that $\phi(T) = U_T U T U^* = U T U^* V_T^*$.

We recall that the Jordan triple product of operators T, S is TST. In the sequel, we consider a surjective maps ϕ on $\mathfrak{B}(H)$ satisfying

$$\gamma(\phi(T)\phi(S)\phi(T)) = \gamma(TST) \quad (T, S \in \mathfrak{B}(H)). \tag{6}$$

It is easily seen that such a map preserves zero Jordan triple product in both directions, that is

$$TST = 0 \iff \phi(T)\phi(S)\phi(T) = 0. \tag{7}$$

We apply the characterization of maps satisfying (7) [4] to find a finer characterization for maps satisfying (6).

Remark 3.5. (1) Applying [4, Theorem 2.2], we conclude that if H is infinite dimensional and a surjection ϕ on $\mathfrak{B}(H)$ satisfies (7), then there is a function $\mu:\mathfrak{B}(H)\to\mathbb{C}\setminus\{0\}$ and a bounded invertible linear or conjugate linear operator $A:H\to H$ such that either

- (a) $\phi(T) = \mu(T)ATA^{-1}$ $(T \in \mathfrak{B}(H))$, or,
- (b) $\phi(T) = \mu(T)AT^*A^{-1} \quad (T \in \mathfrak{B}(H)).$

Here T^* denotes the Banach space adjoint of $T \in \mathfrak{B}(H)$. If J is the conjugate linear isomorphism from H onto its dual H^* , then it is easily seen that $T^* = JT^*J^{-1}$, for all $T \in \mathfrak{B}(H)$. Therefore,

$$\phi(T) = \mu(T)AJT^*J^{-1}A^{-1} \quad (T \in \mathfrak{B}(H)).$$

Clearly, AJ is linear or conjugate linear depending on A is conjugate linear or linear, respectively. Renaming AJ into A, we arrive at

(b)'
$$\phi(T) = \mu(T)AT^*A^{-1}$$
, for all $T \in \mathfrak{B}(H)$,

where A is a linear or conjugate linear invertible operator.

(2) Suppose that $H = \mathbb{C}^n$, $n \geq 3$, and that $\phi: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a surjective map satisfying (7). Applying [4, Theorem 2.1] shows that there exist an invertible matrix $S \in M_n(\mathbb{C})$, a field automorphism $f_0: \mathbb{C} \to \mathbb{C}$, and a scalar function $\mu: M_n(\mathbb{C}) \to \mathbb{C} \setminus \{0\}$ such that one of the following holds:

(c)
$$\phi(A) = \mu(A)Sf(A)S^{-1}$$
 $(A \in M_n(\mathbb{C}))$, or

(d)
$$\phi(A) = \mu(A)Sf(A)^{tr}S^{-1} \quad (A \in M_n(\mathbb{C})),$$

where $f([a_{ij}]) = [f_0(a_{ij})].$

In the two following theorems, we show that if a surjective map ϕ on $\mathfrak{B}(H)$ satisfies (6), then the invertible operators A and S in Remark 3.5(1)-(2) can be replaced by unitaries and moreover, $|\mu| = 1$. As a consequence, ϕ is norm preserving.

Theorem 3.6. Let H be an infinite dimensional complex Hilbert space. A surjective map $\phi: \mathfrak{B}(H) \to \mathfrak{B}(H)$ satisfies (6) if and only if there exist a function $\mu: \mathfrak{B}(H) \to \mathbb{T}$ and a unitary or anti-unitary operator U on H such that either $\phi(T) = \mu(T)UTU^*$ or $\phi(T) = \mu(T)UT^*U^*$, for all $T \in \mathfrak{B}(H)$.

The proof of the following theorem follows the same line as the proof of [4, Theorem 4.1].

Theorem 3.7. Suppose $n \geq 3$, then $\phi: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ satisfies (6) if and only if there exists a unitary matrix U and a function $\mu: M_n(\mathbb{C}) \to \mathbb{T}$ such that either

(i)
$$\phi(A) = \mu(A)Uf(A)U^*$$
, or

(ii)
$$\phi(A) = \mu(A)U(f(A))^{tr}U^*$$

for all $A = [a_{ij}] \in M_n(\mathbb{C})$. We have $f([a_{ij}]) = [f_0(a_{ij})]$ where, $f_0 : \mathbb{C} \to \mathbb{C}$ is the identity or the complex conjugate on \mathbb{C} .

4 Conclusion

A continuous linear map φ preserving the reduced minimum modules of products from a Banach algebra \mathcal{A} topologically generated by its idempotents onto a C^* -algebra, makes \mathcal{A} to be a C^* -algebra. Surjective maps on $\mathfrak{B}(H)$ preserving the reduced minimum modulus of products are *-isomorphisms multiplied by partial isometries and hence are isometries.

References

- [1] Bourhim A, Burgos M, Shulman VS. Linear maps preserving the minimum and reduced minimum moduli. J. Funct. Anal. 2010;258:50–66.
- [2] Chebotar MA, Ke WF, Lee PH, Wong NC. Mappings preserving zero products. Studia Math. 2003;155:77-94.
- [3] Cui j, Hou J. Maps leaving functional values of operator products invariant. Linear Algebra Appl. 2008;428:1649-1663.
- [4] Dobovišek M, Kuzma B, Lešnjak G, Li CK, Petek T. Mappings that preserve pairs of operators with zero triple Jordan product. Linear Algebra Appl. 2007;426:255-279.

- [5] Harte R, Mbekhta M. Generalized inverses in C^* -algebras II. Studia Math. 1993; 106:129-138.
- [6] Müller V. Spectral theory of linear operators and spectral systems in Banach algebras; Basel: Birkhäuser Verlag, 2007.