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Abstract

Preconditioning techniques are useful procedures in increasing the rate of convergence of
iterative methods and in some cases in eliminating possible stagnation in solving multi-linear
systems with nonsingular M-tensors. In this paper, we propose a novel preconditioner ob-
tained by minimizing the norm of the iteration tensor. We also consider a preconditioned
SOR iterative method for solving tensor equations whose coefficient tensor is an M-tensor.
Numerical examples, and comparison results are given to show the efciency of the precondi-
tioner.
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1 Introduction

Tensor equations have many applications in engineering, and scientic computing [2], such as
evolutionary game dynamics [5], partial differential equations, and data mining [1], and image
processing [3].

Consider the following tensor equation of the form

Axm−1 = b, (1)

where A ∈ R[m,n] is an order m dimension n tensor, x, and b are vectors in Cn. The tensor-vector
product is a vector where the entries are defined by

(Axm−1)i =

n∑
i2i3···in=1

aii2i3···inxi2xi3 · · ·xin , i = 1, 2, · · · , n,

where xi denotes the ith component of x. It can be seen that multi-linear systems are made up
of a series of non-linear equations.

Many theoretical analyses, and algorithms were presented for solving (1). It is proofed that
(1) will have a unique positive solution if A be a nonsingular M-tensor, and b be a positive
vector. In addition, some conditions were presented for the existence and uniqueness of the
solution of (1).
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The role of the preconditioning technique is clear in solving linear and multi-linear systems,
which can improve the convergence rate of the method if a suitable preconditioner is chosen.
Lots of efficient preconditioners were proposed to solve linear systems. Although a little research
introduced preconditioned methods for solving multi-linear systems. Li et al. [6] proposed the
preconditioned tensor splitting method for solving the following preconditioned multi-linear
systems (1):

PAxm−1 = Pb,

where P is a preconditioner and the iterative scheme is as follows:

xk = (M(EP )−1FPx
m−1
k−1 +M(EP )−1Pb)[

1
m−1

], k = 1, 2, · · · ,

so that PA = EP − FP is a tensor splitting of PA. A modified preconditioned Gauss-Seidel
method was proposed [4].

In this paper, we proposed a diagonal preconditioner for the SOR method to solve multi-
linear systems. We apply the new preconditioned SOR method to some Numerical examples and
compare the new method to the original SOR method. Numerical experiments and comparison
results confirm the power of the preconditioner.

This paper is organized as follows. In Section 2, a new preconditioner is introduced, and
the preconditioned SOR method is constructed. Section 3 consist of some numerical examples
which demonstrate the efficiency of the presented preconditioned iterative method. The final
section consists of conclusion.

2 Main results

In this section, we propose a diagonal preconditioner by minimizing the Frobenius norm of
Im − PA. Consider the following multi-linear system:

Axm−1 = b, (2)

whereA ∈ R[3,n], x and b are vectors in Cn. Applying a nonsingular matrix P as a preconditioner,
we have

PAxm−1 = Pb. (3)

We can add xm−1 to both sides of (3). So

xm−1 = (Im − PA)xm−1 + Pb,

which implies

xm−1
k+1 = (Im − PA)xm−1

k + Pb.

When we choose P = αI, a constant diagonal matrix will appear. So the iteration transforms
to the Richardson iteration.

xm−1
k+1 = (Im − αA)xm−1

k + αb,

where α is the value of the diagonal entries.

We use the Frobenius norm, and we want to make a diagonal preconditioning matrix P . We
denote the set of a diagonal matrix of size n by ∆n. The optimization problem will be as

min
P∈∆n

∥Im − PA∥F , or min
P∈∆n

∥Im − PA∥2F .
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Finding the entries of P , we define the preconditioner by

P =


α1

α2

. . .

αn

 ,

then
min

α1,α2,··· ,αn

∥Im − PA∥F .

The tensor PA is a tensor where the ith row of each frontal slice of A is multiplied by αi,
because P is diagonal. We call it row scaling.

By the definition of the Frobenius norm and t-product, we have

∥Im − PA∥2F = tr{[(Im − PA) ∗ (Im − PA)T ](:,:,1)}
= tr{[Im ∗ IT

m − Im ∗ (PA)T − (PA) ∗ Im + (PA) ∗ (PA)T ](:,:,1)}
= 1− 2tr(Im ∗ (PA)T )(:,:,1) + tr((PA) ∗ (PA)T )(:,:,1)

where

tr(Im ∗ (PA)T )(:,:,1) =

n∑
i=1

αiaiii,

and

tr((PA) ∗ (PA)T )(:,:,1) =

n∑
i=1

α2
i ∥A(i,:,:)∥22.

Therefore

∥Im − PA∥2F = 1− 2
n∑

i=1

αiaiii +
n∑

i=1

α2
i ∥A(i,:,:)∥22.

∥Im − PA∥2F is a convex function in the αi, and we can find the minimize. We can set the
partial derivatives with respect to αi, i = 1, 2, · · · , n equal to zero. Thus

d

dαi
∥Im − PA∥2F = −2

n∑
i=1

aiii + 2
n∑

i=1

αi∥A(i,:,:)∥22 = 0.

Since αi is the only varibale of each equation, then

αi =
aiii

∥A(i,:,:)∥22
, i = 1, 2, · · · , n.

Accordingly, the diagonal preconditioner which is optimal in the Frobenius norm can be
defined as follows

P =


a111

∥A(1,:,:)∥22
a222

∥A(2,:,:)∥22
. . .

annn

∥A(n,:,:)∥22

 .
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We only consider that the coefcient tensor of (1) is a strong M-tensor. Without loss of
generality, we assume that each diagonal entry of the tensor A is 1. We have the following
preconditioned multi-linear system with our new preconditioner:

Âxm−1 = b̂,

where Â = PA and b̂ = Pb. Consider

Â = D̂ − L̂ − F̂ , or Â = Îm − L̂ − F̂ ,

with D̂ = D̂Im, L̂ = L̂Im, where D is the positive diagonal matrix, −L is the strictly lower
triangle matrix of M(Â). We take the preconditioned SOR method as:

xk = (Tpxm−1
k−1 + qp)

[ 1
m−1

], k = 1, 2, · · · ,

where

Tp = M(Êp)−1F̂p,

Êp =
1

ω
(D̂ − ωL̂),

F̂p = (1− ω)D̂ − ωF̂ ,

qp = M(Êp)−1b.

Theorem 2.1. Let A ∈ R[3,n] be a strong M-tensor. Then for the new preconditioner P ,
Â = PA is a strong M-tensor.

3 Numerical results

n this section, we use some numerical experiments to show the effectiveness and superiority of
the preconditioned SOR method. The stopping criterion ∥ Axm−1 − b ∥≤ 10−10 is used and a
maximum of 1000 iterations is allowed. In all the examples, we take the starting vector x0, and
the right hand-side vector b equal to ones(n, 1). Finding the optimal parameter ω, we search
from 0.01 to 2 in the interval of 0.01. All the examples were executed in double precision in
MATLAB R2014a.

We show the number of iterations by “Iter”, the norm of Axm−1
k − b (xk is the kth approx-

imate solution) in seconds by “Error” and the CPU time in third by “time” for the precondi-
tioned SOR (PSOR) and the SOR methods, respectively.

The product Axm−1 denoted in (1) can be computed by transforming into the following
matrix-vector product:

Axm−1 = A (x⊗ x⊗ · · · ⊗ x)︸ ︷︷ ︸
m−1

,

where ⊗ shows the Kronecker product. Also the matrix-tensor product BA is defined in (2).

Example 3.1. Consider B ∈ R[3,10] as a nonnegetive tensor with

bijk =| tan(i+ j + k) | .

We have ρ(B) = 1450.3. Thus, A = 1500I − B is a symmetric nonsingular M-tensor.
We take b = ones(10, 1) and initial vector x0 = ones(10, 1). For different ω, we compare

the presented PSOR method and SOR method for solving a nonsingular tensor equation. The
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results are shown in Table 1. We show the results for different amounts of ω. In this example,
we could understand that the ω = 1 is the optimal value of this parameter, which means that
preconditioned Jacobian method performs better than the preconditioned SOR method. The
comparison results demonstrate that the preconditioned method could be more efcient than the
original method.

Table 1: Numerical results of Example 3.1.

PSOR SOR

ω Iter Error time Iter Error time

0.25 86 9.32e-11 0.019 112 8.42e-11 0.028
0.5 37 5.76e-11 0.017 47 9.00e-11 0.032
0.75 19 6.11e-11 0.016 24 9.70e-11 0.024
1 6 2.16e-11 0.016 7 2.24e-11 0.028
1.25 19 3.49e-11 0.017 24 4.83e-11 0.021
1.5 36 7.49e-11 0.018 47 5.26e-11 0.021
1.75 85 8.79e-11 0.021 110 9.87e-11 0.024

Example 3.2. In this example, we consider B ∈ R[3,n] as a nonnegative tensor with

bijk =| sin(i+ j + k) | .

and solve the 3rd-order M-tensor system Ax2 = b where A = sI − B. We can set s = n2, since

ρ(B) ≤ max
1≤i≤n

n∑
j,k=1

bijk ≤ max
1≤i≤n

n∑
j,k=1

1 = n2.

Hence A is a strong M-tensor.
We apply preconditioned and un-preconditioned SOR methods to solve (1) with different

amounts of n. The numerical results are reported in Table 2 which confirm that the precon-
ditioned SOR method performs better in both CPU times and iterative steps than the SOR
method.

Table 2: Numerical results of Example 3.2 with ωopt = 1.5.

PSOR SOR

n Iter Error time Iter Error time

100 32 7.87e-11 0.148 44 6.09e-11 0.202
200 33 5.27e-11 1.125 46 7.41e-11 1.270
300 33 6.70e-11 4.423 47 9.61e-11 5.238
400 33 7.87e-11 29.262 48 9.15e-11 62.974

Figure 1 illustrates the relationship between the number of iterations and the normAxm−1−b
and confirms the efficiency of the preconditioner in reducing the error.

4 Conclusion

In this paper, we proposed a diagonal preconditioner by minimizing the Frobenius norm of
Im −PA to solve multi-linear systems. We apply the SOR method and PSOR method to solve
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Figure 1: Performance of the SOR and PSOR in reducing residual norm for Example 3.2.

some numerical examples. Analyzing the comparison results shows that the preconditioner
improves the method especially in reducing the number of iterations and CPU time.

References

[1] M. Che, L. Qi and Y. Wei, Positive-definite tensors to nonlinear complementarity problems,
J Optim Theory Appl., 168 (2016), 475–487.

[2] L. Cui, C. Chen, W. Li and M. Ng, An eigenvalue problem for even order tensors with its
applications, Linear Multilinear Algebra, 64 (2016), 602–621.

[3] L. Cui, W. Li and M. Ng, Primitive Tensors and Directed Hypergraphs, Linear Algebra
Appl., 471 (2015), 96–108.

[4] L. Cui, M. Li and Y. Song, Preconditioned tensor splitting iterations method for solving
multi-linear systems, Appl. Math. Lett., 96 (2019) 89–94.

[5] J. Hofbauer, K. Sigmund, Evolutionary game dynamics, Bull Am Math Soc., 40 (2003),
479–519.

[6] W. Li, D. Liu, S.W. Vong, Comparison results for splitting iterations for solving multi-linear
systems, Appl. Numer. Math., 134 (2018), 105–121.

6


	Introduction
	Main results
	Numerical results
	Conclusion

