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Abstract

In this paper, some relations between Drazin, Moore-Penrose inverses with DMP, CMP
generalized inverses are studied.
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1 Introduction
Let Cm×n be the set of all m× n complex matrices and assume A∗, R(A) and rank(A) denote
the conjugate transpose, column space and rank of A ∈ Cm×n, respectively. For A ∈ Cn×n, the
smallest nonnegative integer m defined by the condition rank(Am)=rank(Am+1) is called the
index of A and is denoted by ind(A).
The Drazin inverse of A ∈ Cn×n is the unique matrix AD = X ∈ Cn×n such that

Am+1X = Am, XAX = X, AX = XA,

where m = ind(A). If ind(A) = 1, then AD is the group inverse of A, which is denoted by A#. The
basic theory and various applications of the Drazin inverse can be found in the monographs [1,6].
The Moore-Penrose inverse of A ∈ Cm×n is the unique matrix A† = X ∈ Cn×m which satisfies
the Penrose equations

AXA = A, XAX = X, (AX)∗ = XA, (XA)∗ = XA.

If X satisfies the equation AXA = A, then X is called a g-inverse of A. A matrix X is an outer
inverse of A, if XAX = X holds. An important feature of the Moore-Penrose inverse is that it
can be used to represent orthogonal projectors. For instance, PA = AA† and QA = A†A are the
orthogonal projectors onto R(A) and R(A∗), respectively.

In [5, Theorem 2.2.21] it has been proven that A can be written as the sum of two matrices
A1 and A2 i.e. A = A1 +A2, where

• rank(A1) = rank(A2
1) i.e. ind(A1) ≤ 1,

• A2 is nilpotent,
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• A1A2 = A2A1 = 0.

The matrices A1 and A2 are called the core and nilpotent parts of A respectively, and this
decomposition is unique.
The concept of DMP inverse of A was introduced in [4]. In this case, the unique matrix X ∈ Cn×n

satisfying
XAX = X, XA = ADA, and AmX = AmA†,

is called the DMP inverse of A and is denoted by AD,†. Moreover, it was proved that AD,† =
ADAA†. Dually, it is easy to see that the dual DMP inverse is given by A†,D = A†AAD.
The CMP inverse for a complex matrix was introduced by [2]. The CMP inverse of A is a
matrix X ∈ Cn×n such that the following equations hold:

XAX = X, AXA = A1, AX = A1A
†, XA = A†A1.

Such matrix X is unique and denoted by Ac† = A†A1A
†.

2 Main results

In this section some relations between Drazin, inverses with DMP, CMP generalized inverses
are studied. Easy calculations show the following lemma which will be helpful throughout the
paper.

Lemma 2.1. Let A ∈ Cn×n and let A = A1 +A2 be the core-nilpotent decomposition. Then

1. ADA1 = A1A
D,

2. AD is a g-inverse of A1,

3. AD is an outer inverse of A.

Theorem 2.2. Let A ∈ Cn×n. Then X = AD is a solution of the following equations.

Ac,†XAc,† = Ac,†XAD,† = A†,DXAD,† = A†ADA†.

Proof. 1. We have

Ac,†XAc,† = Ac,†ADA†AADAA† = Ac,†(AD)2AA†AADAA†

= Ac,†(AD)2AADAA† = Ac,†ADADAA† = Ac,†ADAD,†

= A†AADAA†ADAD,† = A†AADAA†A(AD)2AD,†

= A†AADA(AD)2AD,† = A†AADADAD,† = A†,DADAD,†

= A†AADADADAA† = A†ADADAA† = A†ADA†

Corollary 2.3. Let A ∈ Cn×n. Then X = AD is a solution of the following equations.

AD,†XA†,D = X2AD,†AX = X2A†,D = (AD)3.
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The Hartwig-Spindelbock decomposition [3, Corollary 6] of any matrix A ∈ Cn×n of rank r is
given by

A = U

(
ΣK ΣL
0 0

)
U∗, (1)

where U ∈ Cn×n is unitary, Σ = diag(σ1Ir1 , σ2Ir2 , . . . , σtIrt) is a diagonal matrix of the nonzero
singular values of A, σ1 > σ2 > · · · > σt > 0, r1 + r2 + · · ·+ rt = r, K ∈ Cr×r and L ∈ Cr×(n−r)

satisfy
KK∗ + LL∗ = Ir.

The Drazin inverse and the Moore-penrose inverse of A are as follows [4].

AD = U

(
(ΣK)D ((ΣK)D)2ΣL

0 0

)
U∗, and A† = U

(
K∗Σ−1 0
L∗Σ−1 0

)
U∗. (2)

By using A1 = AADA, we obtain the following

A1 = U

(
ΣK(ΣK)DΣK ΣK(ΣK)DΣL

0 0

)
U∗. (3)

By using Hartwig-Spindelbock decomposition, we obtain the following theorem.

Theorem 2.4. Let A ∈ Cn×n be as in (1). Then

1. A1 = A† if and only if (ΣK)1 = K∗Σ−1 and L = 0,

2. If AD = A1 is, then (ΣK)1 = (ΣK)D,

3. A1 = AD,† if and only if (ΣK)D =
(
(ΣK)D

)3 and (ΣK)DΣL = 0,

4. A1 = A if and only if ΣK(ΣK)D = Ir,

where (ΣK)1 = (ΣK)(ΣK)D(ΣK).

Proof. 1. Let A1 = A†. Then by using (2) and (3), we have

(ΣK)(ΣK)D(ΣK) = K∗Σ−1, (ΣK)(ΣK)DΣL = 0, L∗Σ−1 = 0.

Therefore, A1 = A† if and only if (ΣK)(ΣK)D(ΣK) = K∗Σ−1 and L = 0.

2. Let AD = A1. Then by using (2) and (3), we have

(ΣK)(ΣK)D(ΣK) = (ΣK)D, (ΣK)(ΣK)D(ΣL) = ((ΣK)D)2(ΣL). (4)

The quation (4) is equivalent to the following equation

(ΣK)(ΣK)D(ΣK) = ((ΣK)D)2(ΣK), (ΣK)(ΣK)D(ΣL) = ((ΣK)D)2(ΣL). (5)

Right-multiplying both of these equalities (5) by K∗K and L∗K, respectively and using KK∗+
LL∗ = Ir, we get (ΣK)(ΣK)D(ΣK) = (ΣK)D. Therefore (ΣK)1 = (ΣK)D.

3. Let A1 = AD,†. Then by using (3) and [4, Theorem 2.5], we have

(ΣK)(ΣK)D(ΣK) = (ΣK)D, (ΣK)(ΣK)DΣL = 0. (6)
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Pre-multiplying both of these equalities (6) by
(
(ΣK)D

)2 and (ΣK)D, respectively. Therefore,
A1 = AD,† if and only if (ΣK)D =

(
(ΣK)D

)3 and (ΣK)DΣL = 0.

4. Suppose that A1 = A. Then by using (1) and (3), we have

(ΣK)(ΣK)D(ΣK) = (ΣK), (ΣK)(ΣK)DΣL = ΣL. (7)

Rigth-multiplying both of these equalities (7) by K∗Σ−1 and L∗Σ−1, respectively and using
KK∗ + LL∗ = Ir, the equality A1 = A holds if and only if ΣK(ΣK)D = Ir.

Theorem 2.5. Let A ∈ Cn×n be as in (1) and PA = AA†. Then

(a) PAA1 = A1PA if and only if (ΣK)DΣL = 0,

(b) A1(In − PA) = (In − PA)A1 if and only if (ΣK)DΣL = 0,

(c) Ac†(In − PA) = (In − PA)A
c† if and only if L∗K(ΣK)D = 0.

Proof. (a). Let A ∈ Cn×n. By using (1), (2) and (3), we have

PAA1 = U

(
ΣK(ΣK)DΣK ΣK(ΣK)DΣL

0 0

)
U∗, (8)

A1PA = U

(
ΣK(ΣK)DΣK 0

0 0

)
U∗. (9)

By (8) and (9), the equality PAA1 = A1PA holds if and only if ΣK(ΣK)DΣL = 0.
Pre-multiplying the equation ΣK(ΣK)DΣL = 0 by (ΣK)D and using
(ΣK)D = (ΣK)D(ΣK)(ΣK)D, we get (ΣK)DΣL = 0.
Therefore, PAA1 = A1PA if and only if (ΣK)DΣL = 0.
By (1), (2) and (3), (b) holds.
By [2, P.3(7)], (1) and (2), (c) holds.

3 Conclusion
In this paper, by using DMP, CMP generalized inverses, we obtain some equations. The relation
between Drazin inverse and these equations are studied.
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