

Generalized inverse of matrices

Ehsan Kheirandish*

Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper, some relations between Drazin, Moore-Penrose inverses with DMP, CMP generalized inverses are studied.

Keywords: Moore Penrose inverse, *Drazin inverse*, *CMP inverse*, *DMP inverse* Mathematics Subject Classification [2010]: 15A09, 15A03

1 Introduction

Let $\mathbb{C}^{m \times n}$ be the set of all $m \times n$ complex matrices and assume A^* , $\mathcal{R}(A)$ and rank(A) denote the conjugate transpose, column space and rank of $A \in \mathbb{C}^{m \times n}$, respectively. For $A \in \mathbb{C}^{n \times n}$, the smallest nonnegative integer m defined by the condition rank (A^m) =rank (A^{m+1}) is called the index of A and is denoted by ind(A).

The Drazin inverse of $A \in \mathbb{C}^{n \times n}$ is the unique matrix $A^D = X \in \mathbb{C}^{n \times n}$ such that

$$A^{m+1}X = A^m, \quad XAX = X, \quad AX = XA,$$

where m = ind(A). If ind(A) = 1, then A^D is the group inverse of A, which is denoted by $A^{\#}$. The basic theory and various applications of the Drazin inverse can be found in the monographs [1,6]. The Moore-Penrose inverse of $A \in \mathbb{C}^{m \times n}$ is the unique matrix $A^{\dagger} = X \in \mathbb{C}^{n \times m}$ which satisfies the Penrose equations

$$AXA = A$$
, $XAX = X$, $(AX)^* = XA$, $(XA)^* = XA$.

If X satisfies the equation AXA = A, then X is called a g-inverse of A. A matrix X is an outer inverse of A, if XAX = X holds. An important feature of the Moore-Penrose inverse is that it can be used to represent orthogonal projectors. For instance, $P_A = AA^{\dagger}$ and $Q_A = A^{\dagger}A$ are the orthogonal projectors onto $\mathcal{R}(A)$ and $\mathcal{R}(A^*)$, respectively.

In [5, Theorem 2.2.21] it has been proven that A can be written as the sum of two matrices A_1 and A_2 i.e. $A = A_1 + A_2$, where

- $rank(A_1) = rank(A_1^2)$ i.e. $ind(A_1) \le 1$,
- A_2 is nilpotent,

^{*}Speaker. Email address: ehsankheirandish@math.uk.ac.ir

• $A_1A_2 = A_2A_1 = 0.$

The matrices A_1 and A_2 are called the core and nilpotent parts of A respectively, and this decomposition is unique.

The concept of *DMP inverse* of A was introduced in [4]. In this case, the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$XAX = X, \quad XA = A^D A, \quad and \quad A^m X = A^m A^{\dagger},$$

is called the *DMP inverse* of A and is denoted by $A^{D,\dagger}$. Moreover, it was proved that $A^{D,\dagger} = A^D A A^{\dagger}$. Dually, it is easy to see that the dual *DMP inverse* is given by $A^{\dagger,D} = A^{\dagger} A A^D$. The *CMP inverse* for a complex matrix was introduced by [2]. The *CMP inverse* of A is a matrix $X \in \mathbb{C}^{n \times n}$ such that the following equations hold:

$$XAX = X$$
, $AXA = A_1$, $AX = A_1A^{\dagger}$, $XA = A^{\dagger}A_1$.

Such matrix X is unique and denoted by $A^{c\dagger} = A^{\dagger}A_1A^{\dagger}$.

2 Main results

In this section some relations between Drazin, inverses with DMP, CMP generalized inverses are studied. Easy calculations show the following lemma which will be helpful throughout the paper.

Lemma 2.1. Let $A \in \mathbb{C}^{n \times n}$ and let $A = A_1 + A_2$ be the core-nilpotent decomposition. Then

- $1. A^D A_1 = A_1 A^D,$
- 2. A^D is a g-inverse of A_1 ,
- 3. A^D is an outer inverse of A.

Theorem 2.2. Let $A \in \mathbb{C}^{n \times n}$. Then $X = A^D$ is a solution of the following equations.

$$A^{c,\dagger}XA^{c,\dagger} = A^{c,\dagger}XA^{D,\dagger} = A^{\dagger,D}XA^{D,\dagger} = A^{\dagger}A^{D}A^{\dagger}.$$

Proof. 1. We have

$$\begin{split} A^{c,\dagger}XA^{c,\dagger} &= A^{c,\dagger}A^DA^{\dagger}AA^DAA^{\dagger} = A^{c,\dagger}(A^D)^2AA^{\dagger}AA^DAA^{\dagger} \\ &= A^{c,\dagger}(A^D)^2AA^DAA^{\dagger} = A^{c,\dagger}A^DA^DAA^{\dagger} = A^{c,\dagger}A^DA^{D,\dagger} \\ &= A^{\dagger}AA^DAA^{\dagger}A^DA^{D,\dagger} = A^{\dagger}AA^DAA^{\dagger}A(A^D)^2A^{D,\dagger} \\ &= A^{\dagger}AA^DA(A^D)^2A^{D,\dagger} = A^{\dagger}AA^DA^DA^{D,\dagger} = A^{\dagger,D}A^DA^{D,\dagger} \\ &= A^{\dagger}AA^DA(A^D)^2A^{D,\dagger} = A^{\dagger}AA^DA^DA^{D,\dagger} = A^{\dagger,D}A^DA^{D,\dagger} \\ &= A^{\dagger}AA^DA^DA^DA^DA^{\dagger} = A^{\dagger}A^DA^DAA^{\dagger} = A^{\dagger}A^DA^{\dagger} \end{split}$$

Corollary 2.3. Let $A \in \mathbb{C}^{n \times n}$. Then $X = A^D$ is a solution of the following equations.

$$A^{D,\dagger}XA^{\dagger,D} = X^2 A^{D,\dagger}AX = X^2 A^{\dagger,D} = (A^D)^3.$$

The Hartwig-Spindelbock decomposition [3, Corollary 6] of any matrix $A \in \mathbb{C}^{n \times n}$ of rank r is given by

$$A = U \begin{pmatrix} \Sigma K & \Sigma L \\ 0 & 0 \end{pmatrix} U^*, \tag{1}$$

where $U \in \mathbb{C}^{n \times n}$ is unitary, $\Sigma = diag(\sigma_1 I_{r_1}, \sigma_2 I_{r_2}, \dots, \sigma_t I_{r_t})$ is a diagonal matrix of the nonzero singular values of A, $\sigma_1 > \sigma_2 > \dots > \sigma_t > 0$, $r_1 + r_2 + \dots + r_t = r$, $K \in \mathbb{C}^{r \times r}$ and $L \in \mathbb{C}^{r \times (n-r)}$ satisfy

$$KK^* + LL^* = I_r.$$

The Drazin inverse and the Moore-pennose inverse of A are as follows [4].

$$A^{D} = U \begin{pmatrix} (\Sigma K)^{D} & ((\Sigma K)^{D})^{2} \Sigma L \\ 0 & 0 \end{pmatrix} U^{*}, \quad \text{and} \quad A^{\dagger} = U \begin{pmatrix} K^{*} \Sigma^{-1} & 0 \\ L^{*} \Sigma^{-1} & 0 \end{pmatrix} U^{*}.$$
(2)

By using $A_1 = AA^DA$, we obtain the following

$$A_1 = U \begin{pmatrix} \Sigma K (\Sigma K)^D \Sigma K & \Sigma K (\Sigma K)^D \Sigma L \\ 0 & 0 \end{pmatrix} U^*.$$
(3)

By using Hartwig-Spindelbock decomposition, we obtain the following theorem.

Theorem 2.4. Let $A \in \mathbb{C}^{n \times n}$ be as in (1). Then

- 1. $A_1 = A^{\dagger}$ if and only if $(\Sigma K)_1 = K^* \Sigma^{-1}$ and L = 0,
- 2. If $A^D = A_1$ is, then $(\Sigma K)_1 = (\Sigma K)^D$,
- 3. $A_1 = A^{D,\dagger}$ if and only if $(\Sigma K)^D = ((\Sigma K)^D)^3$ and $(\Sigma K)^D \Sigma L = 0$,
- 4. $A_1 = A$ if and only if $\Sigma K(\Sigma K)^D = I_r$,

where $(\Sigma K)_1 = (\Sigma K)(\Sigma K)^D(\Sigma K)$.

Proof. 1. Let $A_1 = A^{\dagger}$. Then by using (2) and (3), we have

$$(\Sigma K)(\Sigma K)^D(\Sigma K) = K^* \Sigma^{-1}, \qquad (\Sigma K)(\Sigma K)^D \Sigma L = 0, \qquad L^* \Sigma^{-1} = 0.$$

Therefore, $A_1 = A^{\dagger}$ if and only if $(\Sigma K)(\Sigma K)^D(\Sigma K) = K^* \Sigma^{-1}$ and L = 0.

2. Let $A^D = A_1$. Then by using (2) and (3), we have

$$(\Sigma K)(\Sigma K)^D(\Sigma K) = (\Sigma K)^D, \qquad (\Sigma K)(\Sigma K)^D(\Sigma L) = ((\Sigma K)^D)^2(\Sigma L).$$
(4)

The quation (4) is equivalent to the following equation

$$(\Sigma K)(\Sigma K)^D(\Sigma K) = ((\Sigma K)^D)^2(\Sigma K), \qquad (\Sigma K)(\Sigma K)^D(\Sigma L) = ((\Sigma K)^D)^2(\Sigma L).$$
(5)

Right-multiplying both of these equalities (5) by K^*K and L^*K , respectively and using $KK^* + LL^* = I_r$, we get $(\Sigma K)(\Sigma K)^D(\Sigma K) = (\Sigma K)^D$. Therefore $(\Sigma K)_1 = (\Sigma K)^D$.

3. Let $A_1 = A^{D,\dagger}$. Then by using (3) and [4, Theorem 2.5], we have

$$(\Sigma K)(\Sigma K)^D(\Sigma K) = (\Sigma K)^D, \qquad (\Sigma K)(\Sigma K)^D \Sigma L = 0.$$
(6)

Pre-multiplying both of these equalities (6) by $((\Sigma K)^D)^2$ and $(\Sigma K)^D$, respectively. Therefore, $A_1 = A^{D,\dagger}$ if and only if $(\Sigma K)^D = ((\Sigma K)^D)^3$ and $(\Sigma K)^D \Sigma L = 0$.

4. Suppose that $A_1 = A$. Then by using (1) and (3), we have

$$(\Sigma K)(\Sigma K)^D(\Sigma K) = (\Sigma K), \qquad (\Sigma K)(\Sigma K)^D \Sigma L = \Sigma L.$$
(7)

Righ-multiplying both of these equalities (7) by $K^*\Sigma^{-1}$ and $L^*\Sigma^{-1}$, respectively and using $KK^* + LL^* = I_r$, the equality $A_1 = A$ holds if and only if $\Sigma K(\Sigma K)^D = I_r$.

Theorem 2.5. Let $A \in \mathbb{C}^{n \times n}$ be as in (1) and $P_A = AA^{\dagger}$. Then

- (a) $P_A A_1 = A_1 P_A$ if and only if $(\Sigma K)^D \Sigma L = 0$, (b) $A_1 (I_n - P_A) = (I_n - P_A) A_1$ if and only if $(\Sigma K)^D \Sigma L = 0$,
- (c) $A^{c\dagger}(I_n P_A) = (I_n P_A)A^{c\dagger}$ if and only if $L^*K(\Sigma K)^D = 0$.

Proof. (a). Let $A \in \mathbb{C}^{n \times n}$. By using (1), (2) and (3), we have

$$P_A A_1 = U \left(\begin{array}{cc} \Sigma K (\Sigma K)^D \Sigma K & \Sigma K (\Sigma K)^D \Sigma L \\ 0 & 0 \end{array} \right) U^*, \tag{8}$$

$$A_1 P_A = U \begin{pmatrix} \Sigma K (\Sigma K)^D \Sigma K & 0 \\ 0 & 0 \end{pmatrix} U^*.$$
(9)

By (8) and (9), the equality $P_A A_1 = A_1 P_A$ holds if and only if $\Sigma K(\Sigma K)^D \Sigma L = 0$. Pre-multiplying the equation $\Sigma K(\Sigma K)^D \Sigma L = 0$ by $(\Sigma K)^D$ and using $(\Sigma K)^D = (\Sigma K)^D (\Sigma K) (\Sigma K)^D$, we get $(\Sigma K)^D \Sigma L = 0$. Therefore, $P_A A_1 = A_1 P_A$ if and only if $(\Sigma K)^D \Sigma L = 0$. By (1), (2) and (3), (b) holds. By [2, P.3(7)], (1) and (2), (c) holds.

3 Conclusion

In this paper, by using DMP, CMP generalized inverses, we obtain some equations. The relation between Drazin inverse and these equations are studied.

References

- A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edition, Springer, Berlin, 2003.
- [2] M. Mehdipour, A. Salemi. On a new generalized inverse of matrices, *Linear Multilinear Algebra*, 2018;66(5):1046-1053.
- [3] R.E. Hartwig, K. Spindelbock. Matrices for which A* and A[†] commute, Linear Multilinear Algebra, 14,3, 241-256, 1983.
- [4] S.B. Malik, N.Thome, On a new generalized inverse for matrices of an arbitrary index, Applied Mathematics and Computation, 226, 575-580, 2014.

- [5] S.K. Mitra, P. Bhimasankaram, S.B. Malik, Matrix Partial Orders, Shorted Operators and Applications. *World Scientific Publishing Company*, 2010.
- [6] S.L. Campbell and C.D. Meyer, Generalized Inverses of Linear Transformations, *Pitman*, London, 1979.