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Abstract

Let A and B be C∗-algebras over a field F, we show that every F-invariant derivation δ
of A ⊗ B can be represented as tensor sum δ = ∆ ⊗ id + id ⊗ ∇ where id stands for the
identity operator, ∆ and ∇ are derivations on A, B, respectively.
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1 Introduction

Let A and B are C∗-algebras over F. If A, B do not have identities, denote by A⊕F, B⊕F the
C∗-algebras obtained by adjoining an identity to A, B, respectively. Since an arbitrary C∗-norm
on A ⊗ B can be extended to a C∗-norm on (A ⊕ F) ⊗ (B ⊕ F), the restriction of the spatial
C∗-norm on (A⊕F)⊗ (B⊕F) to A⊗B is the spatial norm on A⊗B. Thus we may assume that
A and B have identity elements. The linear span of elements of the form (x⊗ µ)(λ⊗ y), where
x ∈ A, y ∈ B, and µ, λ ∈ F, with (x⊗ µ)(λ⊗ y) = λx⊗ µy is equal to A⊗B. Then A⊗ F and
F⊗B are embeddable in the tensor product A⊗B. Tensor sum of operators can be thought of
as an extension to infinite dimensional spaces of the traditional Kronecker sum of matrices on
finite dimensional spaces [1,3]. The goal of this paper is to prove that every invariant derivation
of A ⊗ B is the tensor sum of the derivations. From the nature of this result, and the relative
simplicity of its proof, one would expect that it is known; however, we have not been able to
find it in the literature among related results. Let us now outline the contents of this paper.
The main topic of the paper is contained in section 2, and we proved the main theorem about
an invariant derivation on a tensor product. In the end of paper we explore corollares, examples
and more results of tensor sum. Niknam [4] proved in 1993 the operator ∆ ⊗ id + id ⊗ ∇ is
a ∗−derivation on A ⊗ B, where δ, ∇ are ∗−derivations over A and B, respectively. In this
paper we show that if δ is a derivation on tensor product A⊗B with invariant property has the
following form.

∆⊗ id+ id⊗∇.
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In the next section we provide all lemmas and proof their. Let A be a C∗-algebra. Then a
∗-derivation δ of A means a linear mapping from A into A such that δ(xy) = δ(x)y + xδ(y),
δ(x∗) = δ(x)∗, for every x, y ∈ A.
By Der(A) we denote the set of all derivations of A. Further, for every u ∈ A we define
ad u : A −→ A by ad u(x) = ux − xu. Note that ad u ∈ Der(A) and such a derivation is said
to be an inner derivation [4].
If A and B are normed spaces, and u ∈ A⊗B, then there exist linearly independent sets {xi},

{yi} such that u =

n∑
i=1

xi ⊗ yi, see [2].

Lemma 1.1. Let A be a normed space over a field F. Then each element u of A ⊗ F may be
written uniquely in the form u = xu ⊗ 1, where xu ∈ A. In particular, ∥u∥ = ∥xu∥.

The following lemma will be needed in the proof of the main result.

Lemma 1.2. Let A be C∗-algebra over a field F, let δ be a ∗-derivation of A ⊗ F. Then there
exists a ∗-derivation ∆ of A such that for every x ∈ A we have

δ(x⊗ 1) = ∆(x)⊗ 1. (1)

Furthermore, ∥∆∥ ≤ ∥δ∥. Inparticular, if δ is closable, so is ∆.

A similar result same as the above lemma holds for a derivation δ of F ⊗ B, where B is a
C∗-algebra over F.
For example, if we put y = 1 in ad u(x⊗ y) = ∆(x)⊗ y for every u ∈ A⊗F, then ad u = ∆⊗ id
is a derivation of A⊗ F. If in addition δ is a derivation of A⊗ F, then αδα−1 is a derivation of
A, where α is the isomorphism from A⊗ F onto A.

2 Main result

In this section, we peresent our main theorem. A mapping δ of tensor product A⊗ B is called
F-invariant if A⊗ F and F⊗B are invariant under δ [6].

Theorem 2.1. Let A and B be C∗-algebras over F. Then every F-invariant derivation δ of
A⊗B can be written as

δ = ∆⊗ id+ id⊗∇,

where ∆ ∈ Der(A), ∇ ∈ Der(B).

3 corollaries

Corollary 3.1. Let A, B be C∗-algebras. If every derivation of A and B are inner then every
derivation of A⊗B is inner.

An element z in A⊗B is said to be tensor sumable if there are x, y in A and B, respectively
such that z = x⊗ 1 + 1⊗ y.

Example 3.2.

2



Decomposition of Invariant Derivations as the Tensor Sum Form

The matrix Z =



0 2 1 2 0 0
−1 0 5 0 2 0
−1 0 −1 0 0 2
0 0 0 4 2 1
0 0 0 −1 4 5
0 0 0 −1 0 3

 is an element of M2×2(R) ⊗M3×3(R), where

Mn×n(R) is the set of all n × n matrices over R, hear n = 2, 3. If X =

(
−1 2
0 3

)
and

Y =

 1 2 1
−1 1 5
−1 0 0

, then Z = X ⊗ I3 + I2 ⊗ Y is a tensor sumable in M2×2(R)⊗M3×3(R).

Corollary 3.3. If A, B are non commutative, then every inner derivation ad z of A⊗B where
z is a tensor sumable, can be written as tensor sum of inner derivations.

Corollary 3.4. Let A, B be C∗-algebras. If ∆ and ∇ are inner derivations over, A, B, respec-
tively. Then ∆⊗ id+ id⊗∇ = adz for some tensor sumable z ∈ A⊗B.

A derivation δ on A⊗B is called tensor sumable if there exist two derivations ∆, ∇ over A
and B, respectively such that δ = ∆ ⊗ id + id ⊗∇ and we write δ = ∆ ⊞∇. Also, the tensor
difference of ∆, ∇ is denoted by ∆⊟∇ and it is definition as follows:

∆⊟∇ = ∆⊗ id− id⊗∇

Theorem 3.5. Let A and B are C∗-algebras over F. Then for every α, β ∈ F, ∆1,∆2 ∈ Der(A)
and ∇1,∇2 ∈ Der(B),
(i) αβ(β−1∆1 ⊞∇1α

−1) = α∆1 ⊞∇1β where α, β are non zero,
(ii) ∆1 ⊞∇1 +∆2 ⊞∇2 = ∆1 ⊞∇2 +∆2 ⊞∇1,
(iii) α(∆1 ⊞∇1)β = α∆1 ⊞∇1β,
(iv) ∆1 ⊞∆1 = ∆1 ⊞ id+ id⊞∆1 − id⊞ id,
(v) ∆1 ⊞∇1 = ∆1 ⊗∇1 iff ∆1 ⊗ id is a quasi-inverse of id⊗∇1,
(vi) ∥∆1 ⊞∇1∥ = ∥∆1∥∥∇1∥ if and only if ∆1 ⊗ id is a quasi-inverse of id⊗∆1,
(vii) If ∆ ̸= λid for every non zero scalar λ ∈ F, then ∆⊞∇ ̸= 0,
(viii) −(∆1 ⊞∇1) = −∆1 ⊞−∇1.
(ix) If ∆1 and ∇1 are normal, so is ∆⊞∇.

Theorem 3.6. Let ∆, ∇ be ∗-derivations on C∗-algebras A, B respectively. Then ∆ ⊟∇ is a
∗-derivation on A⊗B, and (∆⊞ i∇)∗ = ∆∗ ⊟ i∇∗. Furthermore,

(∆⊞∇)(∆⊟∇) = ∆2 ⊟∇2

4 Conclusion

Let us suppose that δ be an F-invariant derivation on A⊗B and restrictions of δ to A⊗F, F⊗B
be δ1, δ2, respectively. Since A⊗ F and F⊗B are isomorphic to A, B, respectively, then there
exist isomorphisms maps α : A⊗ F −→ A given by α(x⊗ r) = rx and β : F⊗B −→ B given by
β(s⊗ y) = sy. Take ∆ = αδ1α

−1, and ∇ = βδ2β
−1, therefore δ = ∆⊗ id+ id⊗∇. then ∆ and

∇ are derivation, for if x, x′ ∈ A, then the liniearity of ∆ follows immediately that αδ1α
−1 is a

linear operator. It is enough to show that ∆ satisfies Leibniz rule. To this

∆(xx′) = (αδ1α
−1)(xx′) = (αδ1)(α

−1(x).α−1(x′))
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= α(δ1(α
−1(x))α−1(x′) + α−1(x)δ1(α

−1(x′)))

= α(δ1(x⊗ 1)(x′ ⊗ 1) + (x⊗ 1)δ1(x
′ ⊗ 1))

= αδ1(x⊗ 1)α(x′ ⊗ 1) + α(x⊗ 1)αδ1(x
′ ⊗ 1)

= αδ1α
−1(x)x′ + xαδ1α

−1(x′)

= ∆(x)x′ + x∆(x′).

Similarly, we can show that ∇ is a derivation on B. Now we prove δ = ∆ ⊗ id + id ⊗ ∇. Let
x⊗ y be an arbitrary elemen in A⊗B we have

(∆⊗ id+ id⊗∇)(x⊗ y) = ∆(x)⊗ y + x⊗∇(y)

= αδ1α
−1(x)⊗ y + x⊗ βδ2β

−1(y)

= αδ1(x⊗ 1)⊗ y + x⊗ βδ2(1⊗ y)

= α(a⊗ 1)⊗ y + x⊗ β(1⊗ b),

where δ1(x⊗ 1) = a⊗ 1 and δ2(1⊗ y) = 1⊗ b (such elements exist for invariance of δ). Hence

α(a⊗ 1)⊗ y + x⊗ β(1⊗ b) = a⊗ y + x⊗ b

= (a⊗ 1)(1⊗ y) + (x⊗ 1)(1⊗ b)

= δ(x⊗ 1)(1⊗ y) + (x⊗ 1)δ(1⊗ y)

= δ((x⊗ 1)(1⊗ y))

= δ(x⊗ y).

Thus, δ = ∆⊗ id+ id⊗∇.
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