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Abstract

In this talk, using the Lieb–Araki concavity, we obtain a noncommutative version of
Freedman’s inequality for martingales, which gives an upper bound for the tail probabilities
of a supermartingale in the setting of von Neumann algebras.
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1 Introduction
Freedman’s inequality [2] asserts that if {Xn : X0 = 0, n ≥ 0} is a martingale in the classical
probability space (P,Ω,F) with martingale difference sequence {Dn : D0 = 0, n ≥ 0} such that
Dn = Xn −Xn−1 ≤ 1 for all n, then, for all c ≥ 0 and h > 0, it holds that

Prob
(
Xn ≥ c and Yn ≤ h for some n ≥ 0

)
≤
(

h

c+ h

)c+h

ec,

in which Yn =
∑n

k=1 Ek−1(D
2
k) is predictable quadratic variation, where Ek−1 denotes the con-

ditional expectation onto the k − 1’st σ-algebra in the underlying filter. Applying the Lieb
concavity theotem, an extension of Freedman’s inequality is provided by Tropp [6] to the case
of matrix martingales.

In this talk, we are inspired by some ideas in the commutative case and Tropp’s result to
provide a Freedman-type inequality in the framework of noncommutative probability spaces.

A von Neumann algebra M on a Hilbert space H with unit element 1 equipped with a normal
faithful tracial state τ : M → C is called a noncommutative probability space. We denote by ≤
the usual order on the self-adjoint part Msa of M. For each self-adjoint operator a ∈ M, there
exists a unique spectral measure E as a σ-additive mapping with respect to the strong operator
topology from the Borel σ-algebra B(R) of R into the set of all orthogonal projections such that
for every Borel function f : σ(a) → C the operator f(a) is defined by f(a) =

∫
f(λ)dE(λ), in

which σ(a) is the spectrum of a, in particular, 1B(x) =
∫
B dE(λ) = E(B).

Let N be a von Neumann subalgebra of M. Then the conditional expectation EN of M with
respect to N is a normal positive contractive projection EN : M → N satisfying the following
properties:
(i) EN (axb) = aEN (x)b for any x ∈ M and a, b ∈ N ;
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(ii) τ ◦ EN = τ .
Moreover, EN is the unique mapping satisfying (i) and (ii).

A filtration of M is an increasing sequence (Mj , Ej)0≤j≤n of von Neumann subalgebras of
M together with the conditional expectations Ej of M with respect to Mj such that

∪
j Mj is

w∗–dense in M.
A sequence (aj)j≥0 in M) is called a martingale (supermartingale, resp.) with respect to

the filtration (Mj)0≤j≤n if aj ∈ Mj and Ej(aj+1) = aj (Ej(aj+1) ≤ aj , resp.) for every j ≥ 0.
Put daj = xj − xj−1 (j ≥ 0) with the convention that a−1 = 0. Then da = (daj)j≥0 is called
the martingale difference of (aj). The reader is referred to [5] for more information.

Given a family of projections (pλ)λ∈Λ of M, we denote by
∧

λ∈Λ pλ the projection from H
onto the closed subspace

∩
λ∈Λ pλ(H).

2 Main results
In the sequal, we assume that (an)n≥0 is a self-adjoint martingale in M with respect to a
filtration (Mn, En)n≥0 with x0 = 0 such that

dn ≤ 1 for all n ≥ 1.

Put b0 = 0 and bn =
∑n

k=1 Ek−1(d
2
k), and for any positive number t, define

u(t)n := exp
{
tan − (et − 1− t)bn

}
.

A generalization of the Lieb concavity [3], is proved by Araki [1] in the setting of von
Neumann algebras as follows.

Theorem 2.1 (Lieb–Araki concavity [1]). Let b ∈ M be a self-adjoint operator. Then the
function

ϕ : a 7→ τ (exp(b+ log(a)))

is concave on the strictly positive part of M.

Remark 2.2. The Jensen’s inequality [4, Theorem A] states that if α is a unital positive map
on M and f is a real concave function on [0,∞), then for any self-adjoint element a ∈ M , it
holds that τ (α(f(a))) ≤ τ (f(α(a))), where f(a) is defined by the functional calculus. Now, let
b ∈ M be self-adjoint and a ∈ M be a strictly positive operator. Define the continuous function
g : (0,∞) → (0,∞) by g(t) = τ (exp(b+ log(t+ a))). It follows from the Lieb–Araki concavity
that g is concave. Let EN be any conditional expectation EN corresponding to a von Neumann
subalgebra N of M. Applying the Jensen’s inequality, one may deduce that

τ (exp {b+ log a}) ≤ τ (exp {b+ log EN (a)})

In the following result, we show that the sequence (u
(t)
n )n≥0 is trace-decreasing.

Proposition 2.3. If the sequence (an)n≥0, fixed as in the begining of section 2, is a positive
martingale in M, then τ(u

(t)
n+1) ≤ τ(u

(t)
n ) for all n ≥ 0. Moreover, τ(u(t)n ) ≤ 1 for all n ≥ 0.

Freedman’s original proof and Tropp’s approach are based on stopped martingales. However,
an applicable version of noncommutative stopped martingales is not available. We present a
noncommutative version of the Freedman inequality under some mild conditions as follows.
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Theorem 2.4. Let α ≥ 0 and β > 0 be real numbers and (u
(t0)
n )n≥0 is a supermartingale in M,

where t0 = log
(
α+β
β

)
. Then there is a sequence (en)n≥1 of mutually orthogonal projections such

that

sup
n≥1

τ
(
1[α,∞)(an) ∧ 1[0,β](bn)

)
2n−1

≤ τ

( ∞∑
n=1

en

)
≤
(

β

α+ β

)α+β

eα.

In what follows, we give an example [5] of the assumption that u(t)n is a supermartingale. We
use the software MATLAB for computations, not a proof.

Example 2.5. Let us consider the von Neumann algebra M = M2(C) of all 2 × 2 complex
matrices with the identity I2. Let τ := 1

2tr be the normalized trace on M. Denote by N the
subalgebra of diagonal matrices. Then

EN
((

a b
c d

))
=

(
a 0
0 d

)
.

Definer the filtration (Mn, En)n≥1 by

M0 = CI2, E0(x) = τ(x)I2, M1 = N , E1 = EN , and Mn = M, En = idM (n ≥ 2).

If we set

a0 := 0, a1 :=

(
1 0
0 −1

)
, a2 :=

(
1 i
−i −1

)
, and an := a2 for every n ≥ 2,

then clearly (an)n≥0 is a self-adjoint martingale and a1a2 6= a2a1. In addition,

d1 =

(
1 0
0 −1

)
≤ 1, d2 =

(
0 i
−i 0

)
≤ 1, and dn = 0 ≤ 1 (n ≥ 3),

is the corresponding difference sequence. Moreover,

b0 = 0,

b1 = E0(d21) = τ

((
1 0
0 1

))
I2 = I2

b2 = E0(d21) + E1(d22) =
(
2 0
0 2

)
bn = b2 (n ≥ 3).

Set t = 2 and λ = e2 − 3, where e is Euler’s constant, we have

u
(2)
0 = exp{2a0 − λb0} =

(
1 0
0 1

)
,

u
(2)
1 = exp{2a1 − λb1} =

(
e5−e2 0

0 e2−e2

)
'
(
0.0917 0

0 0.0045

)
u
(2)
2 = exp{2a2 − λb2} = exp

(
8− 2e2 2i
−2i 4− 2e2

)
'
(

0.0022 0.0009i
−0.0009i 0.0004

)
u(2)n = u

(2)
2 (n ≥ 3).
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We have

E0(u(2)1 ) = 0.0962I2 ≤ u
(2)
0

and E1
(
u
(2)
2

)
'
(
0.0022 0

0 0.0004

)
≤
(
0.0917 0

0 0.0045

)
= u

(2)
1 .

Therefore, (u(1)n )n≥0 is a supermartingale.

One may conclude the classical Freedman inequality as follows.

Corollary 2.6. Let {Xn : X0 = 0, n ≥ 0} be a commutative martingale of bounded random
variables. If the martingale difference sequence {Dn : D0 = 0, n ≥ 0} satisfies Dn ≤ 1 (n ≥ 0),
then for every c ≥ 0 and h > 0, it holds that

Prob (Xn ≥ c and Yn ≤ h for some n ≥ 0) ≤
(

h

c+ h

)c+h

ec, (1)

in which Yn =
n∑

k=1

Ek−1(D
2
k).

Proof. In the commutative case, the projection
∞∑
n=1

en =
∞∨
n=1

en, appeared in Theorem 2.4, is the

indicator variable of

A = {ω : Xn(ω) ≥ c and Yn(ω) ≤ h for some n ≥ 0}

=
∞∪
n=1

(
{ω : Xn(ω) ≥ c} ∩ {ω : Yn(ω) ≤ h}

)
,

where en := χ{Xn≥c}χ{Yn≤h}.
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