

n-Root of Matrices

R. Fallah-Moghaddam^{1,*}

¹Department and Computer Science, University of Garmsar, Garmsar, Iran

ABSTRACT. Assume that $A \in M_m(C)$, when C is an algebraically closed field. Also, consider that n is an arbitrary natural number. Here we are going to find a matrix $B \in M_m(C)$ with a construction method such that $B^n = A$. Assume that $C \in M_m(\mathbb{H})$. Also, consider that t is an arbitrary natural number. We can find a matrix $D \in M_m(\mathbb{H})$ such that $D^t = C$.

Keywords: Root of matrices, Division algebra, Field, Radicable group AMS Mathematics Subject Classification [2020]: 16K20, 12E99, 20H25

1. Introduction

In group theory, a multiplicative group G is called radicable if for every $a \in G$ and $n \in \mathbb{N}$, there exists an element $b \in G$ such that $b^n = a$. The adjective divisible is reserved for abelian G. A division algebra D is called radicable if the unit group D^* is radicable. In particular, when D^* is abelian, the notion of divisibility and radicability coincide and D is called divisible (otherwise indivisible).

But, the structure of nonabelian radicable groups, in general, is unknown. The most extensive previous result in this direction was proved by Mahdavi-Hezavehi and Motiee. They determined in [3] and [4] the class of all radicable F-central division algebras D. In fact, for an indivisible field F, they showed that the following statements are equivalent:

- (1) D is radicable;
- (2) D contains a divisible subfield K/F;
- (3) D is isomorphic to $\left(\frac{-1,-1}{F}\right)$ (the ordinary quaternion division algebra) and $F(\sqrt{-1})$ is divisible.

In addition, G. ten Have (cf. [2]) gives a constructive way of finding roots in $M_m(K)$, where K is an arbitrary subfield of \mathbb{C} .

Given an algebraically closed field C, let $J_m(\lambda)$ denote the Jordan block of size $m \times m$ corresponding to eigenvalue $\lambda \in C$. When $\lambda \neq 0$ and the field C has characteristic zero, the Jordan form of $J_m(\lambda)^n$ is just also $J_m(\lambda^n)$. The above result holds when the field C

^{*}Speaker. Email address: r.fallahmoghaddam@fmgarmsar.ac.ir

has nonzero characteristic p and m < p. When $m \ge p$, things get messier. For instance, over \mathbb{F}_2 , consider the case m = 3, when n = 2 and

$$A = \left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

So,

$$A^{2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Therefore, A^2 in this case has Jordan blocks of sizes smaller than 3.

Let K be a subfield of C. Then a matrix $A \in M_m(K)$ has a K-normal form $C_A = \bigoplus_{i=1}^t d_i C(f_i^{k_i})$, where the $f_i^{k_i}(x)$ are the elementary divisors in K[x] of A. By the definition of elementary divisor the $f_i(x)$ are irreducible, and by using the aforementioned multiplicity d_i we can assume that no two of the $f_i^{k_i}(x)$ are the same. Note that, when m_i is the degree of $f_i(x)$, the order m of the matrix A is equal to $\sum_{i=1}^t d_i k_i m_i$. Now, for every i, take an $\alpha_i = \alpha_i^{(1)}$ which satisfies $f_i(\alpha_i) = 0$, and for $j = 1, \dots, n$, take the n distinct values γ_{ij} such that $\gamma_{ij}^n = \alpha_i$. Let n_{ij} be given by $n_{ij} = [K(\gamma_{ij}) : K(\alpha_i)]$ for $i = 1, \dots, t$ and $j = 1, \dots, n$. In [1], it is proved that for a Given an algebraically closed field C, let K be a subfield of C, and let $A \in M_m(K)$ be nonsingular. Then, with notation as above,

- (1) If $\operatorname{Char}(C) = 0$, then A has an n-th root in $M_m(K)$ if and only if there are nonnegative integers b_{i1}, \ldots, b_{in} , such that $d_i = b_{i1}n_{i1} + \cdots + b_{in}n_{in}$ for $i = 1, \ldots, t$.
- (2) If $\operatorname{Char}(C) = p > 0$, m < p and $p \nmid n$, then A has an n-th root in $M_m(K)$ if and only if there are nonnegative integers b_{i1}, \ldots, b_{in} , such that $d_i = b_{i1}n_{i1} + \cdots + b_{in}n_{in}$ for $i = 1, \ldots, t$.

In this article we will try to present a method to find the roots of a matrix in $M_m(\mathbb{C})$.

2. Main results

In the introduction, a brief overview of some of the steps taken to examine the root of a matrix is given. As we have seen, there are various theorems about the conditions under which the root of a matrix exists. In this section, we are going to present a constructive method for finding the n-roots of members of the ring $M_m(\mathbb{C})$. As mentioned in key theorem of Reference [1], every member of $M_m(\mathbb{C})$ has a n-roots, for any natural number n.

Main result (Constructive method). Assume that $A \in M_m(C)$, when C is an algebraically closed field. Also, consider that n is an arbitrary natural number. Here we are going to find a matrix $B \in M_m(C)$ with a construction method such that $B^n = A$.

We know that for any real number x, $(e^{\frac{1}{n}lnx})^n = x$. Now it suffices to generalize this concept to matrices. Since C is an algebraically closed field, then A has a Jordan canonical form. Without loss of generality, it is enough to reduce the problem to Jordan form.

matrices. Therefore, we ay assume that:

$$A = \left[\begin{array}{rrrr} a & 0 & . & . \\ 1 & a & 0 & . \\ . & . & . & . \\ . & 0 & 1 & a \end{array} \right],$$

when a is an arbitrary element in C. Thus, $A = aI_m + N$, when $N \in M_m(C)$ such that $N^m = 0$. To simplify the calculations, we set a = 1, and thus Thus, $A = I_m + N$, when $N \in M_m(C)$ such that $N^m = 0$. Now, we define:

$$ln(A) = ln(I_m + N) = \sum_{i=1}^{m-1} \frac{(-1)^{i-1}}{i} N^i.$$

Now, set $B = (e^{\frac{1}{n}ln(A)})$. Then $B^n = A$, as we desired.

Assume that \mathbb{H} is real quaternion division algebra over \mathbb{R} . By main result in [5], any $A \in M_m(\mathbb{H})$ has a canonical Jordan form in $M_{2m}(\mathbb{C})$. Of course, if we pay attention to the type of calculations used above and by the same argument as above, for any $A \in M_m(\mathbb{H})$ and $n \in \mathbb{N}$, we can find $B \in M_m(\mathbb{H})$ such that $B^n = A$.

3. Conclusion

Assume that $A \in M_m(\mathbb{H})$. Also, consider that n is an arbitrary natural number. We can find a matrix $B \in M_m(\mathbb{H})$ such that $B^n = A$.

Acknowledgement

The author thanks the Research Council of University of Garmsar for support.

References

- [1] R. Fallah-Moghaddam, H. Moshtagh, *Radicabality Condition On* $GL_n(D)$ Journal of Algebra and Its Applications Vol. 17, No. 11 (2018).
- [2] G. ten Have, Structure of the n-th roots of a matrix, Linear Algebra and Appl., 187 (1993), 59-66.
- [3] M. Mahdavi-Hezavehi, M. Motiee, A criterion for the triviality of G(D) and its applications to the multiplicative structure of D, Comm. Algebra, 40 (2012), 2645-2670.
- M. Mahdavi-Hezavehi, M. Motiee, Division algebras with radicable multiplicative groups, Comm. Algebra, 39 (2011), 4089-4096.
- [5] N. A. Wiegmann, Some theorems on matrices with real quaternion elements, Canad. J. Math. 7 (1955) 191201.