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Abstract

Most of existing methods solving multiobjective quadratic programming with convex
functions and linear constraints. In this paper, the improved weighted sum method is used
to solve this problem with both convex and nonconvex quadratic functions. An algorithm is
proposed, which converges to a set of efficient solutions.
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1 Introduction
We consider the following problem:

min f(x) = (f1(x), ..., fp(x))
s.t. fk(x) ⩾ 0, k = p+ 1, ...,m,

x ∈ [a, b],
(1)

where a, b are n dimensional vectors of nonnegative real numbers and x ∈ [a, b] means that
ai ⩽ xi ⩽ bi for all i = 1, ..., n. Each fk : Rn → R is a quadratic function in the form of

fk(x) = xtHkx+ ctkx+ dk, k = 1, ..., p, (2)

which H1, ..., Hp are real and symmetric n× n matrixes, c1, ..., cp ∈ Rn and d1, ..., dp ∈ R.
Problem (1) is a multiobjective quadratically constrained quadratic programming (MQCQP)

problem. If p = 1, it involves a single objective and we use the term SQCQP instead of MQCQP.
In either case, the feasible set of problem (1) is denoted by X := {x ∈ Rn|fk(x) ≧ 0, k =
p+ 1, ...,m, x ∈ [a, b]} and the set Y := {y ∈ Rp|y = f(x), x ∈ X} called the image of X under
f in the objective space.

MQCQP and SQCQP have been applied in many fields of science, including engineering,
economics and etc (see, for example [3, 6]). At first we introduce some basic notations and
definitions from [2,5,6]. Throughout the paper, Rn denotes the n dimensional Euclidean space.
If x, y ∈ Rn then x ≦ y(x < y) if and only if xi ⩽ yi(xi < yi),∀i = 1, ..., n. In addition, x ≤ y
means that x ≦ y and x ̸= y. We will denote by Rn

≧ the set {x ∈ Rn|x ≧ 0}.
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Definition 1.1. ( [2]) Consider an MQCQP problem. The feasible solution x̂ ∈ X is called
efficient (weak efficient) if there is no another x ∈ X such that f(x) ≤ f(x̂)(f(x) < f(x̂)). If
x̂ ∈ X is efficient (weak efficient) then ŷ = f(x̂) is called a nondominated (weak nondominated)
point. The set of all efficient solutions and nondominated points are called the efficient set and
efficient frontier, respectively

The sets of weakly efficient solutions and efficient solutions are denoted by XwE and XE ,
respectively.

Definition 1.2. ( [6]) A symmetric n× n matrix H is called

• Positive definite if and only if xtHx > 0 for all x ∈ Rn and x ̸= 0.

• Positive semidefinite if and only if xtHx ⩾ 0 for all x ∈ Rn.

Proposition 1.3. ( [6]) Let C be a convex subset of Rn and let f : Rn −→ R be twice continuously
differentiable over Rn.

• If ▽2f(x) (Hessian of f) is positive semidefinite for all x ∈ C, then f is convex over C.

• If ▽2f(x) is positive definite for all x ∈ C, then f is strictly convex over C.

Corollary 1.4. Consider the quadratic function f(x) = xtHx+ctx+d, where H is a symmetric
n × n matrix, c ∈ Rn and d ∈ R. Then, f is convex if the Hessian matrix H is positive
semidefinite. Moreover, f is strictly convex if H is positive definite.

Definition 1.5. ( [6]) A function h : Rn
≧ −→ R is called an increasing function if h(x) ⩽ h(y)

for x ≦ y. It is a d.m (difference of monotonic) function if h(x) = h+(x)− h−(x), where h+ and
h− are increasing functions.

Remark 1.6. Each quadratic function can be represented as a difference of two quadratic
functions with nonnegative coefficients. So, every quadratic function is a d.m function.

Definition 1.7. ( [5]) Let X be a convex and compact subset of Rn and f : X → R. The
convex envelop of the function f over X is denoted by V exXf and for all x ∈ X is defined as

V exXf(x) = sup{g(x) : g is convex on X, g(y) ⩽ f(y), ∀y ∈ X}

Definition 1.8. ( [5]) Let X be a convex and compact subset of Rn and f : X → R. The
concave envelop of the function f over X is denoted by CavXf and for all x ∈ X is defined as

CavXf(x) = inf{g(x) : g is convex on X, f(y) ⩽ g(y), ∀y ∈ X}

Theorem 1.9. ( [1]) The convex envelop and concave envelop of the two dimensional bilinear
function f(x, y) = xy on the hyperrectangle R = {(x, y) ∈ R2 : ℓ ⩽ x ⩽ u,m ⩽ y ⩽ M} are
respectively

V exR(xy) = max{ℓy +mx− ℓm, uy +Mx− uM},

CavR(xy) = min{ℓy +Mx− ℓM, uy +mx− um}.
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2 Improved weighted sum method

One of the well-known scalarization techniques in solving multiobjective optimization problems
is the weighted sum method:

min
x∈X

p∑
k=1

wkfk(x), (3)

where w = (w1, w2, · · · , wp) ∈ Rp
≧. For the scalarization model (3), the following results can

be obtained.

Theorem 2.1. ( [2]) If x̂ is an optimal solution of (3) (and w > 0), then x̂ is a weakly efficient
(an efficient) solution of MQCQP (1).

To get more results, the feasible set X is restricted by additional constraints such that each
objective function is bounded from above. So, the improved weighted sum method is proposed
( [4]):

min
x∈X

p∑
k=1

wkfk(x) (4)

fk(x) ⩽ ϵk, k = 1, ..., p,

where ϵ = (ϵ1, ..., ϵp)
t is an arbitrary vector in Rp. The vector ϵ contains parameters ϵ1, ..., ϵp,

that can be determined by the decision-maker or an expert. Theoretically, these parameters can
be any arbitrary value. Theorem 2.1 is still hold for any ϵ ∈ Rp. Also, we have

Theorem 2.2. ( [4]) If x̂ is an efficient (weakly efficient) solution of MQCQP (1). Then, there
exist w > 0 (w ≧ 0) and ϵ ∈ Rp, such that x̂ is an optimal solution of (4).

3 Main Results

Assume that x̂ be a feasible solution of the MQCQP (1). Consider the scalarization problem
(4) and set ϵk = fk(x̂) for k = 1, ..., p. In this case, If x̂ be an optimal solution of (4), then by
Theorem 2.1, x̂ is a (weakly) efficient solution of the problem (1). Therefore, to solve problem
(1), at first, the scalarization problem (4) corresponding to the problem (1) is written as follows:

min

p∑
k=1

wkfk(x)

s.t. fk(x̂)− fk(x) ⩾ 0, k = 1, ..., p,
fk(x) ⩾ 0, k = p+ 1, ...,m,
x ∈ [a, b],

(5)

An approach to find approximate solutions of the SQCQP (5) is to solve a linear relaxation
of this problem. Here, we use a linear relaxation of problem (5), which is based on the convex
and concave envelops of the bilinear terms in the quadratic functions fk(x). We denote this
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linear relaxation by LP (a, b, x̂).

min

p∑
k=1

wkfk(x)

s.t. tkj ⩾ ajH
k
j x+mk

jxj − ajm
k
j , j = 1, ..., n, k = 1, ..., p,

tkj ⩾ bjH
k
j x+Mk

j xj − bjM
k
j , j = 1, ..., n, k = 1, ..., p,

tkj ⩽ ajH
k
j x+Mk

j xj − ajM
k
j , j = 1, ..., n, k = p+ 1, ...,m,

tkj ⩽ bjH
k
j x+mk

jxj − bjm
k
j , j = 1, ..., n, k = p+ 1, ...,m,∑n

j=1 t
k
j + ctkx+ dk ⩽ fk(x̂), k = 1, ..., p,∑n

j=1 t
k
j + ctkx+ dk ⩾ 0, k = p+ 1, ...,m,

x ∈ [a, b],

(6)

where tkj is the corresponding variable to the convex (concave) envelop of the bilinear function
xjy

k
j such that ykj = Hk

j x and Hk
j is the j-th row of the matrix Hk. Also mk

j and Mk
j are the

minimum and maximum of the linear function Hk
j x on the interval [a, b], respectively. Therefore,

mk
j = min{Hk

j x : x ∈ [a, b]} =
n∑

q=1

min{Hk
jqaq,H

k
jqbq},

Mk
j = max{Hk

j x : x ∈ [a, b]} =
n∑

q=1

max{Hk
jqaq,H

k
jqbq},

wherein, Hk
jq is element (j, q) of the matrix Hk ( [1]).

The next theorem shows that an optimal objective value of the linear programming problem (6)
is a lower bound to an optimal objective value of the quadratic programming problem (5). At
first, we prove the following lemma.

Lemma 3.1. Assume that x̄ be a feasible solution to the quadratic problem (5). Then there
exists a vector t̄ = (t̄11, ..., t̄

m
n ) such that (x̄, t̄) is a feasible solution of the linear problem (6).

Theorem 3.2. Assume (x⋆, t⋆11, ..., t
⋆m
n ) be the optimal solution of the linear problem (6) and x̄

be the optimal solution of the quadratic problem (5). Then

(i)
p∑

k=1

wkfk(x
⋆) ⩽

p∑
k=1

wkfk(x̄);

(ii) If x⋆ is a feasible solution for the quadratic problem (5), then
p∑

k=1

wkfk(x
⋆) =

p∑
k=1

wkfk(x̄).

4 Proposed Algorithm
In the following, we propose an algorithm to solve problem (1) when [a, b] ⊆ R2

≧. At first, we
divide the box [a, b] into smaller sub boxes. Then, for each sub box, we solve the linear problem
(6) to find a set of approximate (weakly) efficient solutions of the quadratic problem (1). By
repeating this procedure and removing the non efficient solutions of this set at each iteration of
the algorithm, we will have a better approximation of the efficient solutions set of problem (1).
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Algorithm 4.1.

• Input f = (f1 = f+
1 − f−

1 , ..., fp = f+
p − f−

p ), w = (w1, ..., wp) ∈ Rp
≧, a = (a1, a2) ∈ R2

≧, b =

(b1, b2) ∈ R2
≧, positive integer m and positive real number ∆.

• Initialization t := 1, [at, bt] := [a, b],X t−1
E := ∅.

• Step 1 Divide rectangular [at, bt] into (tm)2 subrectangular [ℓtij , u
t
ij ] such that

ℓtij = (at1 + (j − 1)st1, at2 + (i− 1)st2), and utij = (at1 + jst1, at2 + ist2),

for i, j = 1, ..., tm and str :=
btr−atr
tm for r = 1, 2.

• Step 2 For each subrectangular [ℓtij , u
t
ij ] for i, j = 1, ..., tm, solve the linear problem (6),

where [a, b] = [at, bt] and x̂ is an arbitrary point in [ℓtij , u
t
ij ]. Set A := A ∪ {x̄}, where

(x̄, t̄11, ..., t̄
m
n ) is the optimal solution of (6).

• Step 3 Construct the set X t
E which is obtained by removing the non efficient points of

problem (1) from X t−1
E ∪ A. Set, XE := X t

E .

• Step 4 If ∥bt−at∥
tm > ∆

Set t := t + 1, at := (at1, a
t
2) and bt := (bt1, b

t
2) where ati = min

x̄∈X t
E

x̄i and bti = max
x̄∈X t

E

x̄i, for

i = 1, 2 then goto Step 1, else stop.
end if.

• Output The sets XE and YE := f(XE) as a discrete approximations of efficient set and
efficient frointer set of problem (1), respectively.

In the sequel we prove that Algorithm 4.1 is convergent.

Theorem 4.2. For each ∆ > 0, Algorithm 4.1 terminates after a finite number of iterations.

The following example show the performance of the algorithm.

Example 4.3. Consider the following biobjective quadratic programming problem ( [3]):

min (f1(x), f2(x))
s.t. −2x1 − x2 + 3 ⩽ 0,

−x1 − 2x2 + 3 ⩽ 0,
−2x1 + 3x2 − 3 ⩽ 0,
x ∈ [(0.5, 0.5), (3, 3)],

where f1(x) = 0.5(5x21 + x22) and f2(x) = 0.5(x21 + 5x22). By [3], the efficient set is two line
segments between the points of {(34 ,

3
2), (1, 1)} and {(1, 1), (53 ,

2
3)}. Figure 1 shows the output

of Algorithm 4.1 with a = (0.5, 0.5), b = (3, 3),m = 7 and ∆ = 0.07, in feasible space X and
objective space Y .
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Figure 1: The sets XE and YE for example 4.3.

5 Conclusion
While most of existing method for solving multiobjective quadratic problems consider convex
objective functions and linear constraints, by the new version of the weighted sum method we
solve this problem when the objective functions are either convex or nonconvex and constraints
are in both linear and quadratic form. In fact, we convert problem (1) to an SQCQP by the
improved weighted sum scalarization. A linear relaxation of SQCQP is extracted which calculate
a lower bound for the optimal objective value of SQCQP on a given box. An algorithm is
proposed to solve multiobjective quadratic problem with quadratic constraints when [a, b] ⊆ R2

≧.
It terminates after a finite number of iterations.
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