

Decomposability of multivariate majorization

Fatemeh Khalooei*

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Let $x, y \in \mathbb{R}^n$. We use the notation $x \prec y$ when x is multivariate majorized by y. We say that $x \prec y$ is decomposable at k $(1 \leq k < n)$ if $x \prec y$ has a coincidence at k and $y_k \neq y_{k+1}$. Corresponding to this majorization we have a doubly stochastic matrix D such that x = Dy. Levow proved that if $x \prec y$ is decomposable at some k $(1 \leq k < n)$ then D is of the form $D_1 \oplus D_2$ where D_1 and D_2 are doubly stochastic matrices, this paper presents the converse of this theorem.

Keywords: Decomposable, Doubly stochastic matrix, Majorization Mathematics Subject Classification [2010]: 15A03 and 15A51

1 Introduction

Let \mathbf{M}_n be the set of all real matrices of order n. A matrix $D \in \mathbf{M}_n$ of nonnegative real numbers for which the sums of the entries in each row and each column are all one is said to be *doubly stochastic*. We denote the set of all doubly stochastic matrices of order n by Ω_n .

Let \mathbb{R}^n be the set of all n-tuples (x_1, \ldots, x_n) of real numbers. Also, let x^{\downarrow} be the vectors obtained by rearranging the coordinates of $x \in \mathbb{R}^n$ in the decreasing order. Thus, if $x^{\downarrow} = (x_1^{\downarrow}, \ldots, x_n^{\downarrow})$, then $x_1^{\downarrow} \geq \cdots \geq x_n^{\downarrow}$.

Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. We say that x is majorized (multivariate majorized) by y, in symbols $x \prec y$, if

$$\sum_{i=1}^k x_i^{\downarrow} \le \sum_{i=1}^k y_i^{\downarrow}, \qquad 1 \le k \le n,$$

and

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i.$$

For further information about majorization, we refer the reader to [1-5].

^{*}Speaker $f_khalooei@uk.ac.ir$

2 Main results

The following concepts are defined by Levow in [4]. Let $x, y \in \mathbb{R}^n, x \prec y$, and

$$\delta_k = \sum_{i=1}^k (y_i^{\downarrow} - x_i^{\downarrow}), 1 \le k \le n - 1,$$
(1)

then $\delta_k \geq 0$.

If $\delta_k = 0$, we say that $x \prec y$ has a *coincidence* at k. If $x \prec y$ has a coincidence at k and $y_k \neq y_{k+1}$, we say that $x \prec y$ is *decomposable* at k.

Theorem 2.1 ([5, A.4]). Let $x, y \in \mathbb{R}^n$, then $x \prec y$ if and only if x = Dy for some doubly stochastic matrix $D \in M_n$

If $x \prec y$ and $y = (D_1 \oplus D_2)x$, where $D_1 \in \Omega_k$ and $D_2 \in \Omega_{n-k}$, then it is clear from the theorem of [2] that $x \prec y$ has a coincidence at k. Also, if $x \prec y$ has a coincidence at k, it is clear from the Theorem2.1 that $D = D_1 \oplus D_2$ where $D_1 \in \Omega_k$ and $D_2 \in \Omega_{n-k}$ such that x = Dy. In the Theorem2.2 Levow proves that if x = Dy, the decomposability of $x \prec y$ at k guarantees that D is a direct sum of matrices in Ω_k and Ω_{n-k} .

Theorem 2.2 ([4, Theorem 2]). Suppose that $x \prec y$ is decomposable at k and that y = Dx then there are matrices $D_1 \in \Omega_k$ and $D_2 \in \Omega_{n-k}$ such that $D = D_1 \oplus D_2$.

In [4], Levow proved that decomposability of $x \prec y$ implies that if $x = Dy, D \in \Omega_n$, then D is the direct sum of two doubly stochastic matrices. Here, we study majorization and related doubly stochastic matrices. We also present that decomposability of $x \prec y$ is a necessary condition for D to be a direct sum of $D_1 \oplus D_2$, where x = Dy and $D_1, D_2 \in \Omega_n$.

Theorem 2.3. Let $x, y \in \mathbb{R}^n_+$ with $x \prec y$. If there exists some k $(1 \leq k \leq n)$ that for every $D \in M_n$ such that x = Dy, we have $D = D_1 \oplus D_2$ where $D_1, D_2 \in \Omega_k$ and $D_2 \in \Omega_{n-k}$, then $x \prec y$ is decomposable at k.

Proof. Let $x \prec y$. Then x = Dy for some doubly stochastic matrix D. The hypothesis ensures that $D = D_1 \oplus D_2$ where $D \in \Omega_k$ and $D_2 \in \Omega_{n-k}$.

The relation x = Dy ensures that $(x_1, \ldots, x_k) = D_1(y_1, \ldots, y_k)$ where $D_1 \in \Omega_k$, and so $(x_1, \ldots, x_k) \prec (y_1, \ldots, y_k)$. It follows that $\sum_{i=1}^k x_i = \sum_{i=1}^k y_i$. Therefore, $x \prec y$ has a coincidence at k.

Now, we claim that $y_k \neq y_{k+1}$. If not; $y_k = y_{k+1}$. We will construct a matrix D' such that x = D'y, but D' is not as a direct sum of two doubly stochastic matrices.

Set $D = [D^1 D^2 \dots D^n]$, where D^i is the ith column of the matrix D. Now, define $D' = [D^1 \dots D^{k-1} D^{k+1} D^k D^{k+2} \dots D^n]$. We observe that x = D'y. As $y_k = y_{k+1}$ and D has the form given in the hypothesis, we see that D' has the same form which we wanted to create. It is a contradiction. Hence $y_k \neq y_{k+1}$, and so $x \prec y$ is decomposable at k. \Box

3 Conclusion

Decomposability is some conditions on the majorization relation \prec on vectors. Here we prove the converse of a theorem of Levow. Examining the decomposability condition on other majorization relation can be subject of future research works.

References

- [1] R. Bhatia, Matrix Analysis, Springer-Verlage, New York, 1997.
- [2] G. H. Hardy, J. E. Littlewood and G. Polya, Some simple inequalities satisfied by convex functions, *Messenger of Mathematics*, 58 (1929), 145–152.
- [3] F. Khalooei, Linear maps preserving or strongly preserving majorization on matrices, Bulletin of the Iranian Mathematical Society, 41 (2015), no.7, 77–83.
- [4] R.B. Levow, Aproblem of mirsky concerning nonsingular doubly stochastic matrices, *Linear Algebra and its Applications*, 5 (1972), 197–206.
- [5] A.W. Marshall, I. Olkin and B. C. Arnold, Theory of Majorization and Its Applications, Springer, New York, 2011.