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Abstract— Accurately determining the depths of gas reservoirs is a critical challenge, particularly in the Kangan and 

Upper Dalan formations of the South Pars gas field. Conventional methods, exemplified by Archie's equation, face 

limitations in such tight carbonate reservoirs, prompting the exploration of advanced techniques like NMR logging. 

However, the high costs and time-consuming nature of NMR logging necessitate alternative approaches. In this study, 

a solution grounded in data-driven insights by leveraging a 1D-CNN (One-Dimensional Convolutional Neural Network) 

algorithm has been proposed. This deep learning approach aims to provide precise depth determination while 

overcoming the challenges posed by traditional methods. The study methodology involves the individual 

implementation of the 1D-CNN algorithm and its integration into a comprehensive model for enhanced accuracy. By 

applying this algorithm, we intend to predict gas effective porosity profile based on well logs to determine productive 

zones and intervals in the Kangan and Upper Dalan formations. The dataset includes information from 5 wells, 

incorporating both training and testing wells, with an emphasis on validation through a blind well to ensure robustness. 

Unlike standard procedures, we go beyond mere prediction by comparing the algorithmic results with actual depths in 

geographically blind well. The study emphasizes the algorithm's industrial implementation capability by showcasing 

its effectiveness in predicting reservoir depths. Preliminary results indicate promising accuracy and stability, paving 

the way for a more intelligent model with practical applications in the delineation of production intervals. In conclusion, 

our research presents a data-driven approach to gas reservoir depth determination, specifically in the Kangan and 

Upper Dalan formations, utilizing the 1D-CNN algorithm. This study not only highlights the potential of this algorithm 

in overcoming traditional limitations but also underscores its practicality and cost-effectiveness as a valuable 

alternative to conventional methods and expensive logging techniques in complex reservoirs. 
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1. Introduction 

   porosity, a measure of empty space within a volume, is crucial in reservoir characterization studies. Effective 

porosity, the ratio of interconnected void space to the total medium volume, is more significant for Petro 

physicists. Core analysis measures porosity in rock samples but has limitations like limited sample representation, 

potential alteration, and time and cost issues for large-scale studies. Effective gas porosity is crucial in determining 

in-situ gas volume in depth intervals, identifying productive layers, and optimizing perforation intervals. It 

provides valuable information about a reservoir's ability to store and transmit gas, impacting production 

performance and recovery potential [1]. By having the hydrocarbon effective porosity profile across a well, 

operators can enhance well productivity by targeting these intervals for perforation. 

   The Archie's law [2] equation is the most common method for predicting hydrocarbon saturation and effective 

porosity profiles within a reservoir, but it encounters errors in tight carbonate reservoirs. NMR logs have various 

applications in petrophysics, including accurate estimation of reservoir water saturation, hydrocarbon saturation, 

volume, permeable porosity, and production layers. However, despite their high accuracy, methods based on NMR 

logs have exorbitant costs and often consume considerable time. 

Although in recent years studies have been made to determine NMR log outputs using data driven models from 

conventional well logs [3], but the literature lacks a model capable of predicting effective gas porosity from NMR 

logs using machine learning techniques. By an overview into the facing challeng, it is evident that the South Pars 

gas field faces a significant challenge in defining production intervals. This study aims to address this by utilizing 

NMR logs, despite the high costs. The conventional method involves analyzing various well logs, but 

misinterpretation can lead to errors. This study introduces a 1D-CNN model to determine the NMR gas effective 

porosity across the well and focuses on model validation through the inclusion of a blind well in the field, 

providing insights into its measurement accuracy and contributing to the resolution of industrial challenges related 

to identifying productive depth intervals. An inteligent model has been developed to predict effective gas porosity 

from NMR log data, significantly reducing costs and time requirements compared to NMR logs. Figure 1 shows 

the study pipeline and the step by step procedure. 

 
Figure. 1. A view of the study flowchart to construct the 1D-CNN intelligent model. 



 
1.1 Case study geology overview 

Tight carbonate gas reservoirs, like the South Pars gas field, are complex hydrocarbon reservoirs with low 

porosity and permeability, influenced by variations in grain size, mineralogy, and diagenetic alterations. These 

reservoirs present unique challenges and opportunities for exploration and production due to their intricate pore 

structure and heterogeneity of carbonate rocks. The South Pars gas field, located in Persian Gulf waters, is one of 

the largest gas fields in the world with a proven reserve of 441.5 tcf of gas in place [4]. The main reservoirs are 

the Dalan and Kangan formations, primarily composed of lime, anhydrite, and dolomite (Figure 2). Accurately 

predicting effective gas porosity is crucial for estimating hydrocarbon volumes and identifying suitable production 

layers for perforation. Conventional models often yield unrealistically low effective gas porosity values in these 

low-porosity intervals. 

  

The Dalan Formation, first discovered in the Dalan No. I well in the Dalan anticline southwest of Shiraz, is a 

significant geological unit that overlies the Furghun Formation. The lower section of the formation is marked by 

dark, massive fossiliferous limestones and dolomites, with an oolitic texture. This lower section thickens from the 

Zagros thrust zone to the southeast end of the Zagros geosyncline near Bander Abbas, indicating a Permian sea 

transgression. The lower part initially displays favorable secondary porosity, transitioning into predominantly 

anhydritic layers with notable anhydrite beds in the middle section. In the central part of Fars province, the Nar 

Member of the Dalan Formation undergoes specific lithological changes, transitioning from anhydrite to dolomite. 

Beyond Bander Abbas, the evaporite beds pinch out in the Furghun Formation. As we ascend, the Dalan Formation 

reverts to carbonate-rich, uniformly thick-bedded rock, primarily composed of micritic limestone and dolomite. 

However, an unspecified section is eroded by a post-Permian unconformity. In the upper part of the Permian 

section, there is a facies change to terrigenous rocks in the interior of Fars Province. 

 The Kangan Formation, located above the Dalan Formation, is characterized by oolitic carbonates with 

intermittent anhydrite beds. It is a significant structure in southern Iran, with a regional unconformity indicating 

the separation between the Permian and Triassic periods. The lower part of the Kangan Formation, featuring a 

 

Figure. 2. Location map of South Pars gas field in the Persian Gulf (right) and stratigraphic position of the studied formations (left) [5]. 



 
shale bed containing Claraia (pelecypod), suggests an Early Triassic age. The formation overlays Permian 

carbonates housing abundant fusulinids of Permian age. The Kangan anticline runs parallel to the main Zagros 

thrust, trending northwest in alignment with the Late Cretaceous-Paleocene compressional stress-field of the 

Zagros geosyncline. The deformation style of the Kangan structure is mainly concentric, utilizing Infra-Cambrian 

(Hormuz) and to a lesser extent Triassic evaporites as basal detachment surfaces. Isopach maps of the Permian 

section reveal the Permian Basin's elongate trough, trending NW-SE parallel to the Cretaceous-Tertiary Zagros 

geosyncline. Thickness decreases towards the SW in the Arabian Shelf area and to the NE towards the Iranian 

Plateau. The Permian depocenters were in the extreme SE portion of the trough, near the present Gulf of Oman, 

with more than 5,000 feet of Permian sediments deposited. The Kangan structure, located at the edge of the 

Permian trough, suggests a shallow-water interior shelf for the Permo-Triassic depositional environment, 

characterized by mainly intertidal and supratidal sedimentation [6]. 

3. Methodology 

3.1 Data Gathering, pre-processing, and feature engineering 

 

This study uses data from 5 gas well logging datasets in the South Pars field, including NMR log information, 

to enhance understanding of the reservoir's permeable porosity distribution and optimize gas production in 

challenging carbonate gas reservoirs. Data from 4 wells (A, B, C, D) were used for training and testing, while data 

from the wells F was used as the blind well for model validation. The primary input data is derived from common 

petrophysical logs, including DTCO, NPHI, RHOB, CAli, SGR, CGR, RLA3, and RLA5. The output data is the 

product of Phie (total effective porosity) and Sg_nmr (gas saturation estimated from nuclear magnetic resonance 

data). . Fig. 3 illustrates the cumulative histogram plot of all the available features.The cumulative frequencies or 

proportions of a dataset are shown in a cumulative histogram plot, derived from a histogram. It provides insights 

into data distribution, revealing the progression of frequencies and percentages. The plot can also determine 

percentiles and individual data points' relative positions within the dataset 

  

a) b) 

  



 
c) d) 

  

e) f) 

  

g) h) 

  

i) j) 

Figure. 3. Cumulative distribution histogram plot of a) Caliper. b) CGR. c) depth, d) DTCO, e) NPHI, f) PEF, g) Rhob, h) RLA3, i) RLA5, j) 

SGR. 

 

Data preprocessing involves three main stages in this study: data cleaning, data denoising, and data 

normalization. Data cleaning removes meaningless readings from the log, while data denoising eliminates noise 

and outliers, facilitating a clearer understanding of the data. Data normalization scales data values uniformly using 

the Min-Max scaler, improving the efficiency of deep learning or machine learning algorithms 

Feature engineering is a crucial aspect of machine learning and data analysis, transforming raw data into 

meaningful features that enhance model performance and provide valuable insights. Conventional methods 



 
include univariate selection, Recursive Feature Elimination, Principal Component Analysis, feature importance 

methods, correlation analysis, L1 regularization, forward/backward selection, and feature scaling/normalization. 

In this study, petroleum engineering knowledge and heat map correlation were used to select input parameters, 

including Caliper (well diameter), DTCO (compressional wave transit time), NPHI (porosity derived from neutron 

log), PEF (photoelectric log reading), and RHOB (bulk density). These input features provide us the information 

for subsequent analysis and modeling, capturing important geological and petrophysical characteristics and 

contributing to a better understanding of subsurface conditions in the studied wells. 

 

 

3.2 1D-CNN 

 

Convolutional Neural Networks (CNNs) are a powerful and successful model in deep learning, particularly in 

image processing. Developed in the 1980s by Yan LeCun and Yann Bengio, CNNs serve as a robust tool for 

pattern recognition and feature extraction in images. They gained popularity and real development in subsequent 

decades, showcasing their success in image recognition competitions, especially in ImageNet competitions. 

Multilayer neural networks were among the earliest artificial neural network models in the history of deep 

learning, but they struggled to leverage spatial features and information from images. CNNs, introduced in the 

1980s, were designed based on ideas independent of engineering and demands in image processing. They use 

convolutional layers to apply filters to images, extracting various spatial features, making them highly efficient 

and effective in pattern recognition and feature identification. 1D CNNs, unlike traditional 2D CNNs, focus on 

one-dimensional signals and are highly beneficial in tasks related to time-series data. They find widespread 

applications in signal processing, especially in extracting important features from audio signals, translating sound 

to text, or analyzing brain waves. Their ability to utilize spatial information in one-dimensional signals contributes 

to improving efficiency and accuracy in tasks related to time-series and sequential data [7]. The structure of a 1D 

CNN may include multiple convolutional layers, activation layers, and pooling layers, allowing the model to 

extract complex features from input data (Figure 4). This structure is suitable for various tasks in signal and time-

series data processing, making it highly effective in pattern recognition, prediction, and data separation. The 

convolutional layer is responsible for feature extraction on the input vector, using a convolution kernel to execute 

local convolutions and define receptive fields. The size and type of the kernel significantly impact the features 

extracted. The training stage uses various kernels to extract multiple features, creating detailed input maps. The 

pooling layer is used to further extract features and reduce the dimensionality of the convolution result, similar to 

convolution. Common pooling functions include average and max pooling. The fully connected layer aligns with 

the traditional neural network structure and consists of multiple hidden layers. It combines the features extracted 

by the previous layers and integrates the information from the convolutional and pooling layers to produce the 

final output [8]. 

 

Figure. 4. A schematic to overview the structure of a 1D-CNN [9]. 



 
 

3.3 Algorithm impplementation and evaluation 

 

The provided python code establishes a 1D Convolutional Neural Network (1D-CNN) using the Keras library 

with TensorFlow as the backend. The model architecture is configured sequentially, beginning with a 1D 

convolutional layer featuring 16 filters and a kernel size determined by the variable kernelSize. This layer, 

utilizing the Rectified Linear Unit (ReLU) activation function, processes input data with a shape of (nFeatures, 

1). Subsequently, a dropout layer with a 20% dropout rate is incorporated, followed by the application of Leaky 

Rectified Linear Unit (Leaky ReLU) activation, introducing a small negative slope. 

The model further incorporates three additional 1D convolutional layers with varying filter sizes (32, 64, 128) 

and kernel sizes (9, 9, 5). Another dropout layer, with a 20% dropout rate, is interposed, and Leaky ReLU is 

reapplied as the activation function. The fifth convolutional layer boasts 256 filters and a kernel size of 5, followed 

by Leaky ReLU activation. Subsequently, MaxPooling with a pool size of 2 is applied. The output from the 

convolutional layers undergoes flattening to facilitate input to the fully connected layers. 

The succeeding layers consist of three fully connected layers with node sizes of 256, 128, and 64. Leaky ReLU 

is employed as an activation function for the first, and Batch Normalization is applied. The subsequent three fully 

connected layers exhibit decreasing node sizes (64, 32, 16). The final layer is a Dense layer with nodes equal to 1 

and a sigmoid activation function (Figure 5). For compilation, the model utilizes the Adam optimizer with a 

learning rate of 0.001, employing Mean Squared Error (MSE) as the loss function and Mean Absolute Error 

(MAE) as a metric for assessment.  

This 1D-CNN architecture is thoughtfully structured for regression tasks, incorporating strategic use of dropout 

layers and batch normalization to mitigate overfitting. Activation functions and optimizer choices align with 

established practices in neural network design, contributing to the network's stability and effectiveness during 

training.The  provided code constructs a 1D-CNN tailored for regression tasks, incorporating convolutional and 

fully connected layers with activation functions, dropout, and normalization techniques to enhance its learning 

capabilities and generalization to new data. The structure of the model is organized to progressively extract 

features from the input data and make accurate predictions. 

   Models’ performances were assessed using three mathematical expressions: R-squared (𝑅2), mean absolute 

error (MAE), and mean squared error Mean squared error (MSE). 𝑅2 quantifies the proportion of dependent 

variable variation explained by independent variables, while MAE and MSE measure the average squared 

difference between anticipated and actual values. Both measures evaluate regression model performance, with 

lower values indicating greater performance (Table 1). 

 

 
Table 1. The mathematical expressions of the performance metrics (loss functions). 

 

Model evaluation parameters Mathematical expression 

R-squared (𝑅2) 
𝑅2 = 1 −

𝛴𝑖(𝑦𝑖 − �̂�𝑖)2

𝛴𝑖(𝑦𝑖 − �̅�𝑖)2
 

Mean squared error (MSE) 
𝑀𝑆𝐸 =  

1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1
 

Mean absolute error (MAE) 
𝑀𝐴𝐸 =  

1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑗=1
 



 

 

Figure. 5. A schematic of the constructed 1D-CNN layers, depicting each layer's uinits number and activation function. 



 
4. Results 

 

   After completing the model and algorithm construction, the next step involves implementation and examining 

the obtained results. To evaluate the performance, as mentioned earlier, three criteria have been utilized. The 

model has been implemented on three sets of data, and the results can be observed in Table 2. For a better 

understanding of the results, the predicted gas effective porosity values by the model are plotted against the NMR 

log-derived values (the target values) for each of the three data sets in Figure 6. The R-squared value obtained 

from each data set is also indicated. In Figure 7, a column chart for each of the three metrics in the study is drawn 

based on the obtained results from the model implementation. Finally, in Figure 8, the predicted gas effective 

porosity values are plotted alongside the values derived from the NMR log. Considering the trend of both plots, 

the high accuracy of the designed model in determining productive intervals (with suitable gas effective porosity) 

and non-productive intervals (with low gas effective porosity) can be observed. 

 

 

Table 2. Statistical results of the implemented algorithm on the Train, Test, & Validation datasets. 

 Train Test Validation 

R-squared 0.989 0,981 0.905 

MAE 0.237 0.395 0.934 

MSE 0.487 1.02 2.04 

 

 

 

 

Figure 6. A cross plot of target value (NMR given) and algorithm predicted values of gas effective porosity for all 3 datasets.. 



 
 

Figure 7. A column chart to compare the applied model accuracy on the train and test, and validation datasets in terms of R-squared (𝑅2), 

mean absolute error (MAE), mean squared error (MSE). 

 

 

Figure 8. Comparison of NMR gas effective porosity profile and the algorithm predicted profile. 



 
   Productive intervals generally refer to depth intervals in which hydrocarbons first of all have a significant 

volume, so that production from it is economical, and then in these intervals, hydrocarbons must have the ability 

to move and transfer. It means that it is stored in holes that are connected to each other and have the ability to 

transfer hydrocarbons. In Figure No. 8, it can be seen that the model has been able to identify well the intervals 

that are prone to production, as well as the intervals that have a small volume of gas with the ability to transfer, 

and determine their boundaries as well, just like the NMR log. 

 

 

5 Conclusion 

 

In the South Pars field, the Kangan and Dalan Upper formations, characterized by a dolomite and calcite 

structure interwoven with anhydrite veins, exhibit a constrained porous environment, leading to frequently non-

permeable porosities. The presence of these unique geological conditions introduces inaccuracies in conventional 

log readings, complicating the precise differentiation between productive and non-productive intervals. The NMR 

log stands out as the most accurate method for determining gas production depth intervals in these formations. 

However, its high costs and occasional lack of economic feasibility limit its widespread use. To address these 

challenges, this study employed a 1D-CNN algorithm, leveraging machine learning, to interpret common well 

logs continuously and predict gas effective porosity derived from NMR logs in the well. Consequently, the model 

predicts production and non-production layers. Data from five locations underwent meticulous pre-processing and 

feature engineering, entering the algorithm for analysis in three categories: training, testing, and validation. The 

R-squared results, 0.989, 0.981, and 0.905 for training, testing, and parameter measurement, respectively, affirm 

the commendable performance of the intelligent model in solving the presented problem. This study underscores 

the potential of artificial intelligence and data-driven algorithms in overcoming challenges in the fields of geology 

and petrophysics. 
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