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Abstract 

Today, induction motors (IMs) are widely used and their 

maintenance has received significant attention. There is 

a high possibility of a fault occurring in a bearing and a 

stator winding in these motors. This paper has presented 

a methodology for detecting Bearing Fault (BF) and 

Stator Winding Fault (SWF)  in IMs using Motor Current 

Signature Analysis (MCSA), current RMS value, Wiener 

filter, and Empirical Wavelet Transform (EWT). The 

Convolutional Neural Network (CNN) was used to 

classify (identify) the extracted features. Data logging 

systems that output sinusoidal current signals and RMS 

values (the latter is more common in industries) can 

benefit from this method because it takes advantage of 

the RMS of the current signal. The results of the tests 

illustrate the presented method can detect faults in the 

bearing and stator winding of IMs very accurately. 

 

Keywords: bearing faults, intelligent fault detection, 

MCSA, EWT, Wiener filter. 

 

Introduction 

The induction motor has become a significant part of 

many industries as it is used in cranes, pumps, 

compressors, fans, blowers, machine tools, and electric 

vehicles. Low cost, hardness, high reliability, and 

compatibility with different operating conditions are 

reasons for the high use of these electric motors. While 

operating, It is unavoidable for IMs to undergo a variety 

of electrical, mechanical, thermal, and environmental 

stresses.[1] These stresses can result in mechanical and 

electrical failures when electric motors are not repaired 

and maintained properly. Many IM faults occur in 

bearings, which account for 40% of all faults. The faults 

disorder the performance of IMs, which causes multiple 

and unhealthy vibrations, and higher power consumption 

up to the motor's irreversible failure. They can also affect 

the devices' performance connected to the motor. These 

cases cause a lot of financial problems for industries. This 

topic illustrated the importance of continuously 

monitoring the status of IMs. 

Monitoring the status of IMs can be done using several 

signals, but vibration and current signals are the most 

important. These signals have been used in many studies 

to monitor the status of IMs. This is due to the fact that 

any fault that occurs in IMs (electrical or mechanical) will 

result in significant changes in these signals. By 

converting one-dimensional vibration signals into two-

dimensional vibration images and classifying them using 

CNN, [2] used vibration signals to detect defects without 

feature extraction. The vibrational signal analysis 

procedure is commonly used in the literature, but there are 

some issues associated with vibrational behavior, which 

can also include disturbances outside the system being 

studied [3]. Additionally, using a large number of external 

sensors is expensive and impractical since they require a 

lot of space, as well as being difficult to install in 

inaccessible locations [4]. 

The IM current signal can be used for the more effective 

detection of electrical faults. In addition, small vibrations 

can be caused by mechanical faults in the rotor shaft, 

which can lead to a change in the air gap. These types of 

faults can be detected using the current signal since these 

small changes can produce false frequencies that reflect in 

the current spectrum [5], [6]. In [7], by analyzing stator 

current signals, and continuous wavelet transforms 

(CWTs), the fault created in the outer race of the bearing 

was identified. Alternatively, the genetic algorithm in [4] 

was used to select the essential characteristics of the 

current signal, and the machine learning algorithm was 

used to assess bearing faults. 

The present technique uses the RMS value of the IM 

current signal, Wiener filter, and EWT in order to detect 

the different IM states, including HL, BF, and SWF. 

Firstly, the IM current signals are received, and RMS 

values are calculated utilizing an appropriate sampling 

frequency, and then the RMS values will be passed 

through the Wiener filter to remove noise related to Data 

Acquisition System (DAS), current sensors, and power 

supplies. Using EWT, the basic characteristics of the 

RMS values are derived, and then the matrix of EWT 

coefficients is converted into gray-scale images and 

classified by the CNN algorithm. The presented method 

is advantageous in two respects: first, since the motor 

current signal is used, it tackles the vibration signal issue, 

secondly, the RMS value of the motor current signal is 

calculated, providing the situation to use both data 

logging systems that output sinusoidal current signals and 

RMS values. 

The division of this article is as follows: after the 

introduction, Section II discusses the theoretical 

background of the methods used in this study. Section III 

discusses the tests and their results. Finally, Section IV 

comprises the conclusion of this paper. 

 

II. THEORETICAL BACKGROUND 

Fig. 1 demonstrates the main steps of the method, the tools 

used in this method, namely, Wiener filter, EWT, and 

CNN, will be examined respectively. 
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A. Wiener Filter 

   Hansen and Jensen first proposed the Wiener method in 

the single-channel case [8]. The desired signal and the 

existing noise are analyzed in this filter. Considering both 

as random processes with linear properties, the noise 

signal is filtered accordingly. Considering x(m) as the 

input signal and H(m) as the noise, the following equation 

can be derived: 

 

( ) ( ) ( )x m N m H m                         (1) 

 

Considering y (m) to be the output signal, the signal 

should be an estimation of N (m). As a result, an error 

signal (e (m)) can be expressed as follows: 

 

( ) ( ) ( )e m y m N m                          (2) 

 

This signal should be a minimum. By correcting the weights 

of the Wiener filter coefficients Wk, the adaptive algorithm 

strives to minimize the mean squared error. 
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In this equation, E (.) abbreviation of expectation. 

Alternatively, to determine the value of y (m), the discrete 

Wiener filter with k taps uses the following equation: 
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Furthermore, according to the Wiener-Hopf equation: 
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This equation determines the optimal weights for the Wiener 

filter. According to this equation, 𝑟𝑑𝑥 is the correlation 

function between x (n) and D (n), 𝑊𝑜0 , 𝑊𝑜1 , … , 𝑊𝑜𝑝−1  are 

the optimal filter tap weights, and 𝑟𝑥𝑥   is the autocorrelation 

function of x (n) [9]. 
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B. Empirical Wavelet Transform (EWT) 

  After the RMS values of the current signals have been 

filtered and noise caused by the power source, measuring 

sensors, and the environment has been eliminated, pre-

processing begins. This step is essential because 

commonly used data-driven methods cannot identify 

faults from raw signals. In most applications, the signals 

are non-linear and non-stationary which leads to 

complicate the analysis process. Wavelet Transforms 

(WT) and Empirical Mode Decompositions (EMDs), used 

to deal with such signals, attempt to decompose them into 

various modes and extract interesting features by 

analyzing them. In particular, EMD can decompose a 

signal into a set of oscillatory components that extracts the 

number of the features in the input signal. Obtaining basis 

functions from the signal itself is the essential feature of 

this method. However, its problem is the lack of a 

mathematical theory to describe it. Another widely used 

method for analyzing non-stationary and non-linear 

signals is WT. The disadvantage of this method is that the 

fixed basis functions are not fully matched with all the real 

signals, which restricts its application. The method used 

in this study is the empirical wavelet transform (EWT), 

which is a combination of WT and EMD methods, defined 

step by step and not in a single mathematical formula. 

EWT consists of determining the Fourier sections and 

then creating wavelet filters to extract different modes 

from the processed signal. As the first step, the Fourier 

transform of the input signal is obtained. Then, all local 

maximum values in the spectrum are found, and the 

Fourier spectrum is divided through them. The 

partitioning is performed by considering the center of two 

adjacent local maxima as the boundary of each section 

[10], [11]. For a more detailed description of EWT, the 

reader is requested to refer to Gilles (2013) [12]. 

 

C. Convolutional Neural Network (CNN) 

   The Convolutional neural network (CNN) is a multi-layer 

neural network with a deep supervised learning architecture. 

There are three main characteristics of  CNN that make it 

powerful in 2-D analysis, including local receptive fields, 

weight sharing, and subsampling [13]. Normally, CNN has 

three layers: convolutional, sub-sample, and fully connected. 

The convolutional layer convolves filter kernels with the 

input local regions, then by the activation unit it generates the 

output features. Every kernel has the same size. 𝑊𝑖
𝑙 and 𝑏𝑖

𝑙are 

used to respectively represent the weights and bias of the i-th 

filter kernel in layer l, and  𝑎𝑗
𝑙  is used to represent the j-th 

region in layer l. The convolutional process can be expressed 

as follows: where 𝑎𝑖𝑗
𝑙+1 illustrates the input of j-th neuron in 

frame i of lay l+1. 

 

Start 

Calculating the RMS value of the current signal 

Filtering noise with a Wiener filter 

Using EWT to extract features 

Using CNN algorithm for classification 

Extraction of the stator current from the IM 

End 

Fig. 1. Main steps of the proposed method for fault 

detection in IM 



 

ICEMG 2023, 1 -2 March, 2023 

 1l l l l

ij i j ia f W a b                      (7) 

 

Typically, a pooling layer is applied to the feature maps 

obtained by the convolutional layer. As a result of the 

pooling, the most significant local information can be 

extracted from each feature map. In contrast, this operation 

can significantly reduce the dimensionality of the feature. 

The max-pooling layer is applied in this paper. Assuming 𝑀𝑗 

illustrates the j-th pooling window, the max-pooling 

transformation is defined as follows: 

 

  ( ) max ( )
j

l l

i i
k M

p j a k


                        (8) 

The fully-connected layer is a traditional feed-forward neural 

network that for activation function in the output, uses the 

softmax function. Following is a definition of the softmax 

activation function: 
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Finally, based on the probability distribution above, the 

output layer completes the classification.[14] 

 

 

III. EXPERIMENTATION AND RESULTS 

A. Experimental Setup For the purpose of the test 

   The test was performed by a three-phase, four-pole IM 

with a nominal power of 1.2 kW and a nominal voltage of 

220 V at a frequency of 50 Hz. TERCO model MV1042-

225 was used as a brake generator. To generate the 

required load for the IM under test, the device uses a DC 

machine. This test considers three modes of the IM: 

Healthy (HL), Stator Winding Fault (SWF), and Bearing 

Fault (BF) (Fig. 2). Data Acquisition System (DAS) and 

Universal Technic model US-UB clamp are used to 

measure the current, which is connected through a USB 

cable to a Personal Computer (PC), and the data is 

recorded at a frequency of 2000 Hz. The current signal is 

acquired in 100 one-second windows for each state. Fig. 

3 illustrates a window of received current signals for each 

state. The general method is implemented in PyCharm 

software on a PC. The setup is illustrated in Fig. 4. 

 

B. Signal Processing Results 

The current signals receive through the DAS for three 

various states of IM, i.e., HL, BF, and SWF, then the RMS 

value steps, Wiener filter, and EWT are applied (fig.1). 

First, for each IM state, the RMS value is extracted at the 

sampling frequency of 200 Hz from each window of the 

received current signal (containing 2000 samples). To 

eliminate the noise caused by the harmonics of the clamp, 

power supply, and unknown sources such as 

electromagnetic interference, the obtained values are 

passed through the Wiener filter. In order to resolve the 

limitation caused by the type of output in the use of data 

logging systems that the output as a sinusoidal current 

signal or signal RMS value (commonly used in most 

industries), RMS values obtained for the current signals 

before applying the Wiener filter and EWT. Next, to 

extract features from the current signal, the matrix of 

EWT coefficients is obtained by applying the EWT, with 

selecting the appropriate number of modes (N), to filtered 

RMS values. By using the matplotlib function available in 

Python [15], the matrix is converted into an image. The 

time-frequency results of the RMS values of the current 

signal are shown in Fig. 5 in order to be illustrated the 

advantages of using the Wiener filter. Fig. 5.a and b 

respectively show The one-dimensional EWT extracted 

from RMS values with and without the Wiener filter in a 

Gaussian window. As shown, the harmonics related to 

different states of the IM are clearly visible after applying 

Drive 
IM IM DC generator 

Speed controler 

Mechanical load PC 

Clam

p 

Fig. 4. Test station for signal acquisition 
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the Wiener filter. Next, scikit-image processing was used 

for improving image clarity [16] and, as illustrated in 

Fig.5.c, a part of the image in Fig. 5.b was omitted for 

emphasizing the variable segments and eliminating the 

fixed segments. The image was converted from color 

mode (3D) to gray mode (1D) to enhance clarity and 

decrease complexity (Fig. 5.d). Eventually,  to classify the 

created patterns correlated with each state of IM, CNN 

was used. In the next section, CNN's configuration 

parameters and its results are presented. 

C. Convolutional Neural Network Results 

It is essential to balance the amount of information 

extracted from the analyzed image with the size of the 

input image because the size of the input image is a 

fundamental factor in the complexity of CNNs. The 

images were analyzed in a variety of sizes, including 

256×256, 128×128, 64×64, and 32×32. Finally, based on 

information preservation in images of larger sizes, 32 × 

32 pixels were chosen. This is because the complexity of 

calculations is reduced by decreasing the matrix 

associated with images and owing to the reduced 

calculation complexity, learning speed is increased. This 

value is partly convenient because other CNN-based 

techniques use images of input with a size of 224×224 

pixels [17]. Next, the CNN architecture structure is 

examined. Several tests were performed to specify the 

parameters of convolution layers, filters, and pooling 

steps to achieve the most efficient and simplest 

architecture. Ultimately, the optimal values of these 

parameters were determined by trial and error (Fig. 6). 

The parameters were altered one by one to enhance the 

accuracy of the analysis. As a result of the obtained 

values, the CNN contains four convolution layers with 

sliding convolution filters and rectified linear units 

(ReLU), three max-pooling layers, one fully connected 

layer, and one Softmax layer. In addition, there are two 

parameters that must be determined to optimize the CNN 

architecture accurately, systematically, and 

multiobjective. These parameters are learning rate and 

batch size. The learning rate determines the step size 

during training to reduce the error and adjust the weights 

[18]. The learning rate was determined with Adam. Adam 

an adaptive learning rate method that for various 

parameters, calculates individual learning rates. The rapid 

convergence of error and high accuracy, are reasons to use 

the Adam [19].  

   Furthermore, the batch size affects computing time and 

accuracy. In each training iteration, this parameter is 

determined as the subset size of the entire data set. Batch 

size has an inverse and a variable relationship with 

computing time and accuracy, respectively. The meaning 

of the variable, i.e., accuracy may increase or decrease by 

increasing batch size. Eventually, the batch size of 25 was 

selected because of its sensible computational time and 

high accuracy. After determining the main parameters, 

CNN can be trained and validated. In total, there are 300 

input data for CNN (3 modes of IM, each state has 100 

data), of which 20% (60 data) were used for validation 

and  80% (240 data)  for training. CNN training and 

(a) 

(b) 

(c) 

(d) 

Healthy Bearing Fault Stator Winding Fault 

Fig. 5. Time – Frequency plane for the current signals 

illustrated in Figure3 for : (a) the RMS and EWT 

without Wiener filter; (b) the RMS and EWT with 

Wiener filter; (c) the RMS and EWT with Wiener filter 

in the selected range; (d) the RMS and EWT with 

Wiener filter in the selected range in grayscale. 
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validation results are shown in Fig. 7, which illustrates the 

training and validation accuracy percentage is 100%. 

 

 

IV. CONCLUSIONS 

This article detects faults in the IM through current 

signature analysis using a combination of the Wiener filter 

and EWT method. Results of the tests indicate that the 

combination method had very high accuracy in 

diagnosing minor faults under the two conditions, faults 

in the stator winding and the bearing, which include a high 

percentage of IM faults. Furthermore, since the RMS 

value of the input current signal is used, the restriction of 

using data logging systems that output the RMS value is 

overcome. The method can also be applied to other faults 

besides the checked faults and can be used online with IoT 

to detect them. On the other hand, the method's high level 

of precision in signal processing can also be used to detect 

faults in other rotating electric motors. 
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