
The Second International Conference on Electrical Motors and Generators –ICEMG 2023 
1-2 March, 2023, Sabzevar, Iran. 
 

ICEMG 2023, 1 -2 March, 2023 

ICEMG 2023-XXXXX 
Dynamic Load Emulation for Evaluating EVs Machines Based on Sliding Mode Control  

Mohammadreza Adib1, Abolfazl Vahedi1 
 

1Iran University of Science and Technology, Tehran, Iran 
Mohammadreza_adib@elec.iust.ac.ir, aVahedi@iust.ac.ir 

 
Abstract 
Dynamometers are widely used for electric machines and 
their drive systems assessment, reducing prototyping 
time for many applications, such as Electric Vehicles 
machines. Having the same mechanical topology allows 
changing the control algorithm to significantly improve 
the overall functionality. Hence, this paper proposes 
dynamic load emulation by utilizing sliding mode 
control. The proposed method is characterized by its 
simplicity, robustness, and low computational effort. A 
proper sliding manifold is designed in which the sliding 
manifold contains the desired dynamic. The control 
signal is derived from that, which consists of two parts; 
the first part is based on the dynamics of the system, and 
the second part is a switching function, responsible for 
the rejection of disturbances. Thus, dynamic load 
emulation (DLE) can be attained with a fast and precise 
response to various linear and nonlinear loads based on 
the mathematical model of the desired load. The desired 
model of mechanical load provides the speed reference to 
achieve the desired dynamic by forcing the shaft to rotate 
at a specific speed. The approach has been validated 
using a linear and a nonlinear load. The perfect tracking 
of the reference has shown that emulation still can be 
carried out despite uncertainty in the model and 
disturbances. 
 
Keywords: dynamic load emulation; dynamometer; 
electric machines test bench; mechanical load emulation; 
sliding mode control. 
 
Introduction 
Dynamometers must be able to resemble the actual 
mechanical load conditions for the motor under test 
(MUT) so that the characteristics of the electric machines 
can be evaluated in real-world situations, such as those 
dynamic behaviors that present on the road. It is usually 
complicated, potentially time-consuming, and even 
impossible to replicate the real situation within a 
laboratory environment. Also, it is more efficient to use 
dynamometers instead of building a complete setup. It has 
been found that passive dynamometers (such as eddy 
current) are primarily used to simulate and provide 
constant loads, which are known as static tests and can 
provide information about efficiency, temperature, 
torque-speed characteristics, vibration, and so on [1]–[4]. 
A rapid prototyping technique, known as the dynamic 
emulation of mechanical loads, was created to assess the 
performance of drives in mechanisms in comparison to 
the traditional approach. It is an interesting new tool for 
the design of algorithms for controlling variable speed and 
torque in mechatronics. It enables the development of 
controllers for diverse components without the 
requirement of a prototype, as well as multiple testing 
options. It allows for the examination of varying inertia 

and highly nonlinear dynamics [4]. Meanwhile, with the 
rapid growth in demand for electric vehicles (EVs), it is 
imperative to evaluate traction motors which are widely 
used in EVs, their drive system, and transmission in a 
dynamic situation [5]. It is recommended that facilities 
should be evaluated under dynamic conditions, such as 
accelerating and braking, that a machine can be 
encountered during transient periods. Various methods 
have been proposed for conducting research on hybrid 
electric vehicles (HEVs) and EVs [3]. Insights into the 
vehicle's functionality can be generated by testing the 
vehicle's chassis on a dynamometer [6]. The chassis 
dynamometers require a complete setup, while alternative 
dynamometers are available that can be coupled directly 
to the shaft of MUT, as shown in Figure 1; therefore, only 
the motor and drive system can be properly assessed 
during the early stages of development. A mathematical 
model as shown in Figure 1(b) can replace the entire 
actual mechanical load shown in Figure 1(a) and generate 
a reference for the load machine to act as the mechanical 
load. Hardware-in-the-loop simulations are also popular, 
as this method can significantly reduce testing time and 
expenses. Verification can be conducted using hardware-
in-the-loop test procedures during the preliminary phases 
of development. Using this method, the control hardware 
interfaces with a real-time simulator that has models of 
the system [5]. 
 

 
Figure 1. Replacing actual load with load machine. (a): MUT is 
in direct contact with actual loads. (b): Load machine emulates 
actual load behavior based on the desired model. 
 
Several software- and hardware-related equipment make 
up the advanced electric machine test bench. Within the 
software part, the model of desired mechanical load 
model, data collected from sensors, and control algorithm 
exist. Hardware contains two coupled machines, a base 
frame, sensors, etc. Considering that the hardware 
topology is almost identical, enhancing the control 
strategy at the software stage can have a significant impact 
on the overall functionality of the same test bed. Hence, 
having a control algorithm that can be robust enough is 
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vital. Existing parameter variations, disturbances, model 
uncertainties, and structural uncertainties are the reason 
for utilizing a robust control algorithm to have precise 
trajectory tracking [7], [8]. As the mechanical structures 
in the dynamometers are the same, updating the control 
section that is robust and simple to implement is 
paramount to have a more accurate emulation. However, 
the mechanical coupling can affect the control algorithm's 
performance. For example, the backlash effect and 
flexible shaft cause difficulties and stability issues. Thus, 
in [9], to address the problem of poor stability and 
accuracy during the load emulation of a rigid-flexible 
shaft with a compound correction compensation for the 
control method is proposed. A variety of approaches to 
dynamic load emulation (DLE) has been presented in 
recent research. The inverse mechanical dynamic (IMD) 
used to be applied in many studies such as [1], [2], [10]–
[12] due to its simplicity. The IMD provides a torque 
reference without dynamic load emulation and does not 
guarantee that the desired dynamics will be preserved. 
The main demerit of the IMD approach is the noise of its 
output. The derivative terms in the equations lead to noise, 
which may cause instability [13], [14]; a filter can be used 
to the produced noise to alleviate, but it lowers the speed 
of response. Taking advantage of a system transient 
response, [14] proposes a compensator. Through the 
analysis of transient system step response from 
experimental testing data, it is possible to fully design this 
compensator based on parametric system identification. 
Some references, such as [12], [15], [16], utilized a 
proportional-integral (PI) controller to imitate the 
mechanical load behavior. By changing the load model, 
the PI-based controllers need to tune every time in order 
to keep a good performance. Furthermore, in [17], an 
induction motor was able to replicate an internal 
combustion engine system thanks to an auto-tuned PI 
speed controller. To imitate the dynamics of a wind 
turbine drivetrain in a wider control bandwidth than a 
typical PI control, a PID speed controller and a hysteresis 
current control were designed in [18]. Power electronics-
controlled machines are dynamically fast, so they are able 
to emulate conventional mechanical systems more easily 
than conventional mechanical systems. Despite this fact, 
the designed controller is limited to a specific system and 
cannot be adapted to applications requiring faster 
dynamic response time. A number of approaches are 
presented in the literature to address these issues, 
including Model Predictive Control (MPC) approach that 
can handle the requirement for high performance, input 
and output constraints, and optimal control signals. The 
authors of [19] presented a dynamometer based on two-
degree-of-freedom (2-DOF) feedforward MPC has been 
presented for combustion engines. Conventional state 
feedback and 2-DOF flatness-based feedforward are 
discussed, then the results of the proposed 2-DOF MPFFC 
show improvement compared to the previously discussed 
methods. In general, the MPC could provide optimal 
signals within the system constraints; however, there are 
some drawbacks to using it. The MPC is dependent on the 
model and parameters; besides, due to solving a cost 
function in every time step, the computational effort 
enforces the utilization of advanced hardware. In [20], a 
new DLE method has been proposed for emulating 

mechanical loads based on a mathematical model and uses 
a compensator with a speed-tracking controller. The given 
results of the paper illustrate a very good representation 
of the desired mechanical linear and nonlinear load 
behavior that can be achieved under parameter variation. 
 
Dynamic Load Emulation principle 
Real-world systems are typically nonlinear, and nonlinear 
systems are neither homogeneous nor follow the principle 
of superposition. In addition, uncertainty and unmodeled 
dynamic, can cause the controller to suffer serious 
problems [7]. In EVs application, emulating various kinds 
of loads is needed to imitate the real situation for the 
motor and the drive system associated with it. 
Considering the uncertainties and parameter variations in 
dynamometer systems and the nonlinear nature of the 
desired load, this research presents and evaluates the 
sliding mode control for dynamic load emulation to solve 
these problems. The simplified system is illustrated in 
Figure 2. It is the permanent magnet type machine that is 
widely used in EV applications due to its high efficiency, 
high power density, and other beneficial characteristics 
[20]–[23]. In dynamic load emulation, the main objective 
is to force the actual speed to reach the emulated speed 
(Wem) produced by the load model during the transients. 
The emulated speed is the speed that both machines, 
which are mechanically connected, should follow as a 
reference to the desired dynamic that can be emulated. In 
this concept, the model of the desired load is available, 
and the electromagnetic torque produced by the MUT can 
be measured or estimated. 
 

 
Figure 2.  Diagram of system with MUT and Load machine. 
 
According to Figure 3, The mechanical dynamic equation 
of the actual system is: 

𝑇𝑇𝑚𝑚 + 𝑇𝑇𝑒𝑒 = 𝐽𝐽�̇�𝜔𝑟𝑟 + 𝐵𝐵𝜔𝜔𝑟𝑟     (1) 

Where Tm and Te are the load machine and drive machine 
torque, respectively; ωr is the shaft speed. J and B are the 
total inertia and viscous coefficient of both machines. With 
TL = 0, the MUT will experience only the inertia of the 
motor under test, J1, while the desired inertia is Jem.  

To put it in another way, the transfer function (in which ‘s’ 
is the Laplace transform operator) of the motor (e.g., 
electric vehicle) in a real situation is: 

𝐺𝐺𝑟𝑟(𝑠𝑠) = 𝜔𝜔𝑟𝑟(𝑠𝑠)
𝑇𝑇𝑚𝑚(𝑠𝑠)

             (2) 

Moreover, the transfer function of the motor in the desired 
situation, like a road, can be defined as: 

𝐺𝐺𝑒𝑒𝑚𝑚(𝑠𝑠) = 𝜔𝜔𝑒𝑒𝑚𝑚(𝑠𝑠)
𝑇𝑇𝑚𝑚(𝑠𝑠)−𝑇𝑇𝑒𝑒(𝑠𝑠)

    (3) 

To assure that the desired behavior is implying on the 
MUT, these two transfer functions (equations 2 and 3) 
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should become ideally the same; hence, Te is needed to 
exert an additional torque on the shaft to control the 
acceleration or deceleration rate of the whole system; 
thus, the desired dynamic could be met when the real 
speed tracks perfectly the emulated speed that is generated 
by the desired load model. 

 
Figure 3.  Simplified representation of mechanical coupling. 
 
Control algorithm 
The sliding mode controller (SMC) is of interest since the 
nonlinear nature of the controller is suitable for use with 
systems that contain nonlinear dynamics [7], [24]–[26]. 
Many existing approaches that are reviewed in the first 
section are not fast and robust or require tuning the 
parameters in order to have better performance. Hence, 
here sliding mode control is explained based on the 
aforementioned principle of dynamic load emulation. The 
first step in designing an SMC is to create an intermediate 
variable S (sliding manifold) such that �̇�𝑠 contains u (input 
control), and while S goes to zero, the error goes to zero; 
thus, generally, a candidate could be as (4). For a second-
order system, the value of n is two, so the sliding manifold 
by choosing n = 2 in equation (4) can be driven as (5). By 
rearranging equation (5), it can be easily shown that the 
error goes to zero when the sliding variable goes to zero. 
Meanwhile, the derivative of the sliding variable contains 
�̈�𝜃 in which from the state equation of the system, the input 
control signal appears in the sliding variable. 

𝑠𝑠 = � 𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜆𝜆�
𝑛𝑛−1

𝑒𝑒     (4) 

𝑠𝑠 = �̇�𝑒 + 𝜆𝜆e     (5) 

Error and the derivative of error are defined as (6): 

𝑒𝑒(𝑡𝑡) = 𝜃𝜃(𝑡𝑡) − 𝜃𝜃d(𝑡𝑡),    

�̇�𝑒(𝑡𝑡) = �̇�𝜃(𝑡𝑡) − �̇�𝜃d(𝑡𝑡)    (6) 

𝜃𝜃 is the rotor angle, 𝜃𝜃d the desired angle produced by the 
load model in order to achieve the desired dynamic, and 𝜆𝜆 
is a positive constant. The value of 𝜆𝜆 can be set by trial 
and error. By choosing 𝜆𝜆 large enough, the controller sees 
a larger error, and consequently, the response would be 
faster but too high value for it leads to fast changes in 
response to minor errors; in this application, the value of 
𝜆𝜆 is considered to be roughly 20. The second step is to 
design the control signal, which consists of two parts, the 
first part is designed based on the ideal mechanism that is 
obtained from the derivative of the sliding manifold (u1), 
and the second part is the switching function of the sliding 
manifold (u2). Figure 4 shows different starting points as 
the initial condition. The first part of the control signal, 
which is defined as u1, forces the state variables to reach 
the sliding manifold in which it has the desired dynamics. 
Meanwhile, the second part of the control signal, which is 
defined as u2, keeps the state variable within the vicinity of 
the sliding manifold as the actual system does not entirely 
match the ideal one. In fact, because of uncertainties and 
disturbances, some error is produced and makes a non-zero 
value for S, resulting in the switching part acting in a 

negative direction to suppress the disturbances and 
uncertainties. 

𝑢𝑢1(𝑡𝑡) =
1
𝑏𝑏
�−𝑓𝑓 − 𝜆𝜆�̇�𝑒 + �̈�𝑒𝑑𝑑�, 

𝑢𝑢2(𝑡𝑡) = −𝜂𝜂 × sign(𝑆𝑆), 

𝑈𝑈 = 𝑢𝑢1 + 𝑢𝑢2     (7) 

In which sign(s) is: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑆𝑆) = �
1 𝑆𝑆 > 0
0 𝑆𝑆 = 0
−1 𝑆𝑆 < 0

    (8) 

If the dynamic of system is assumed to be �̈�𝑥 = 𝑓𝑓(𝑥𝑥) +
𝑏𝑏(𝑥𝑥)𝑢𝑢,  𝑓𝑓 is an estimation of the system, b is the input 
vector, and η can be supposed as the upper band of 
uncertainties which will explain in the following sections. 

According to Figure 4, if the state variables of the system 
approach the sliding manifold, S will approach zero. When 
S becomes negative, the value of sign(s) will be +1, so the 
amplitude of the switching part will be -η. Also, as S 
becomes positive, the amplitude of the switching part will 
be +η instantly which means high-frequency changes in 
the control signal. As a consequence, the chattering 
problem during the sliding phase stimulates the higher-
order emergence of unmodeled dynamics. Furthermore, 
since the switching frequency of power electronics devices 
has an upper limit, it is not feasible to support the changes 
in the control signals. In this paper as an effective way to 
address the chattering issue, a saturation-type function for 
the switching function is used. 

 
Figure 4.  Sliding manifold and chattering phenomena 
 
Lyapunov stability analysis 

By supposing the Lyapunov function candidate as (9), 
and according to the Lyapunov stability criterion, the 
Lyapunov function must be positive, and the derivative of 
it must be negative for a considered system to stay stable. 
Based on (9), the assumed Lyapunov function is always 
positive, and the derivative of it must be proved to be 
negative. By supposing the derivative of the Lyapunov 
function is negative, such as (10), and reforming the 
equation to achieve equation (11), which is called the 
sliding condition, two cases can be defined as (12) and 
(13). 

𝑉𝑉(𝑆𝑆) = 1
2
𝑆𝑆2     (9) 

�̇�𝑉(𝑆𝑆) = 1
2
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆2) = 𝑆𝑆�̇�𝑆 < 0                              (10) 

𝑆𝑆�̇�𝑆 < −𝜂𝜂|𝑆𝑆| < 0 and  𝜂𝜂 > 0                             (11) 

𝑠𝑠 > 0 ⇒  𝑆𝑆�̇�𝑆 < −𝜂𝜂𝑆𝑆 ⇒ �̇�𝑆 < −𝜂𝜂               (12) 

𝑠𝑠 < 0 ⇒  𝑆𝑆�̇�𝑆 <   𝜂𝜂𝑆𝑆 ⇒ �̇�𝑆 > 𝜂𝜂               (13) 

If S is positive, according to (12), both S on each side of 
the equation cancels out, and the derivative becomes 
negative. In this case, the derivative of Lyapunov, which 
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is (10), becomes negative. When S becomes negative, the 
derivative would be positive, and again the equation (10) 
becomes negative; in both cases, the sliding manifold is 
absorbing, regardless of where the initial states are 
located. As beforementioned, the η should be large 
enough to cover the uncertainties, so the state variables 
stay in the vicinity of the sliding manifold; besides, it can 
be easily shown that reaching occurs in finite time. 
 
Controller design 

In this section, one linear and one load are considered 
for design. 

A. Linear model 
For evaluating the controller’s response, a linear load 

is described by (14) and is presented as the desired load 
model in Figure 2. For a linear load that is described as 
(14), Jem and Bem are the desired inertia and viscous 
friction, respectively. 

𝐺𝐺𝑒𝑒𝑚𝑚 = 1
𝐽𝐽𝑒𝑒𝑚𝑚�̈�𝜃+𝐵𝐵𝑒𝑒𝑚𝑚�̇�𝜃

                  (14) 

As previously explained, an intermediate sliding 
manifold can be considered as: 

𝑠𝑠(𝑡𝑡) = �̇�𝑒(𝑡𝑡) +  𝜆𝜆𝑒𝑒(𝑡𝑡)                (15) 

In which 𝑒𝑒(𝑡𝑡) and �̇�𝑒(𝑡𝑡) are as below 

𝑒𝑒(𝑡𝑡) = 𝜃𝜃(𝑡𝑡) − 𝜃𝜃d(𝑡𝑡) , 

�̇�𝑒(𝑡𝑡) = �̇�𝜃(𝑡𝑡) − �̇�𝜃d(𝑡𝑡)                (16) 

The derivative of the sliding variable contains the input 
signal which is TL in this concept. Meanwhile, equation 
(14) has the �̈�𝜃 term. By rearranging equation (14) and 
putting the reformed equation in the derivative of sliding 
manifold (17), signal control can be obtained. 

�̇�𝑠(𝑡𝑡) = �̇�𝑒(𝑡𝑡) + �̈�𝑒(𝑡𝑡)�̇�𝑒(𝑡𝑡) + �̈�𝜃(𝑡𝑡) − �̈�𝜃d(𝑡𝑡)            (17) 

𝑇𝑇𝑒𝑒 + 𝑇𝑇𝑙𝑙 = 𝐽𝐽�̈�𝜃 + 𝐵𝐵�̇�𝜃 ⇒ �̈�𝜃 = 1
𝐽𝐽
�𝑇𝑇𝑒𝑒 + 𝑇𝑇𝑙𝑙 − 𝐵𝐵�̇�𝜃�              (18) 

�̇�𝑠 = �̇�𝑒(𝑡𝑡) + �𝑇𝑇𝑒𝑒 + 𝑇𝑇𝑙𝑙 − 𝐵𝐵�̇�𝜃� 𝐽𝐽⁄ − �̈�𝜃d(𝑡𝑡) = 0              (19) 

𝑇𝑇𝑙𝑙 = 𝐽𝐽�̈�𝜃𝑑𝑑 + 𝐵𝐵�̇�𝜃 − 𝑇𝑇𝑒𝑒 − 𝐽𝐽𝜆𝜆��̇�𝜃 − �̇�𝜃𝑑𝑑�               (20) 

The first part of the control signal is expressed by equation 
(20). By subtracting the switching part, the complete signal 
control will be: 
𝑈𝑈 =  𝐽𝐽�̈�𝜃𝑑𝑑 + 𝐵𝐵�̇�𝜃 − 𝑇𝑇𝑒𝑒 − 𝐽𝐽𝜆𝜆��̇�𝜃 − �̇�𝜃𝑑𝑑� −  𝜂𝜂 × Sgn(𝑆𝑆)  (21) 

B. Nonlinear model 
To assess the functionality of controller for nonlinear 

loads, watt governor model is used in many references. 
Figure 5 illustrates a simplified watt governor load; 
applying torque to the shaft and increasing the speed 
causes the flying balls to go up; hence, the inertia and 
viscous friction coefficients will vary and exhibit nonlinear 
behavior. Watt  governor model equations can be expressed 
as follow: 

�̇�𝑥1 = −𝐵𝐵em+2𝑚𝑚ℓ2𝑥𝑥2 sin(2𝑥𝑥3)
𝐽𝐽em+2𝑚𝑚ℓ2 sin2(𝑥𝑥3)

𝑥𝑥1 + 1
𝐽𝐽em+2𝑚𝑚ℓ2 sin2(𝑥𝑥3)

𝑇𝑇𝑒𝑒 , 

�̇�𝑥2 = − 𝐵𝐵𝑜𝑜
𝑚𝑚ℓ2

𝑥𝑥2 + 1
2
𝑥𝑥12 𝑠𝑠𝑠𝑠𝑠𝑠(2𝑥𝑥3) − 𝑔𝑔

ℓ
𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥3), 

�̇�𝑥3 = 𝑥𝑥2                 (22) 

here Jem and Bem are defined as: 

𝐽𝐽ef = 𝐽𝐽em + 2𝑚𝑚ℓ2 sin2 𝜃𝜃                (23) 
𝐵𝐵ef = 𝐵𝐵em + 2𝑚𝑚ℓ2�̇�𝜃sin (2𝜃𝜃)                 (24) 

And the state vector is 𝑥𝑥 = �𝜔𝜔, �̇�𝜃, 𝜃𝜃�𝑇𝑇. 

Similar to the previous procedure for a linear load, the 
control signal for a watt governor load based on equations 
(22) - (24) can be calculated as: 

𝑈𝑈 = 𝐵𝐵𝑒𝑒𝑒𝑒�̇�𝑥1 + 𝐽𝐽𝑒𝑒𝑒𝑒�̈�𝑥1∗ − 𝑇𝑇𝑒𝑒 − 𝜆𝜆𝐽𝐽𝑒𝑒𝑒𝑒(�̇�𝑥1 − �̇�𝑥1∗) − 𝜂𝜂 × Sgn(𝑆𝑆) 
(25) 

 
Figure 5. Watt governor model 
 
Simulation results 

In this section, the simulation results of two loads are 
provided. The lumped inertia of both machines is 0.004 
kg.m2, and the viscous friction is 0.008 N.m.s. First, a 
linear load with Jem = 0.002 kg.m2 and Bem = 0.01 N.m.s 
are set to show that the dynamometer can emulate the 
lower dynamics of the total system. The lower the inertia, 
the more challenging it is to track the reference, because 
lower inertia leads to higher dynamics and faster changes 
in the reference. In order to aggravate the situation and 
validate the controller robustness in the presence of 
disturbances, an arbitrary disturbance is added to the 
system in t = 0.15 seconds. Figure 6(a) shows step changes 
in MUT’s speed reference and the load machine helps the 
MUT to accelerate in step changes in order to see lower 
inertia than lumped inertia of both machines. To illustrate 
the reaching phase and sliding phases, the initial value of 
the emulated speed is set at about 50 rpm. Consequently, 
at the beginning, the difference between the real speed and 
emulated speed is large. During the reaching phase, the 
value of the sliding variable is large, resulting in a larger 
control signal as shown in Figure 6(b). In the magnified 
section of Figure 6(a), the error between real speed and 
desired speed dramatically decreases. After applying 
disturbance, Figure 6(a) shows that the real speed is kept 
virtually close to the desired speed. 

Figure 6(b) shows the disturbance and control signal 
input simultaneously to exhibit the rejection of the injected 
disturbance. While disturbance leads to higher error in 
speed tracking, the second part of the control input 
compensates for the effects of it and suppresses the 
disturbances. As the system distances from the desired 
reference, the value of S becomes larger, leading to higher 
u2 in the control input. This part will be subtracted from u1, 
and the actual system does not see the disturbances. The 
emulation is repeated for Jem = 0.015 and Bem = 0.02 to 
show the capability of emulating different J and B, as 
shown in Figure 7. 
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(a) 

 
(b) 

Figure 6. Emulating linear load with Jem=0.002 and Bem=0.01. 
(a) precise reference tracking of step changes; (b) control signal 
and disturbance. 
 

By increasing the inertia of the system, the dynamic of 
the system will become slower. Obviously, for a higher 
value of inertia, more torque will be needed in order to 
produce a higher value of torque. Since the dynamics for 
lower inertia is faster than the higher value of inertia for 
loads, if the controller can replicate the desired load 
behavior, it will be capable of emulating slower dynamics. 
In conclusion, the dynamometer based on SMC can 
emulate different inertia and viscous friction and reject the 
disturbances. Results show fast and accurate mechanical 
load behavior emulation for the motor under test. 

 
Figure 7. Emulating linear load with Jem=0.015 and Bem=0.02.  

Additionally, a watt governor model is placed in the 
load model block as a representation of a nonlinear load. 
Figure 8(a) shows the step changes in MUT’s speed 
command. The most nonlinearity behavior occurs while 
balls in the governor go up as shown in Figure 8(b); hence, 
inertia and viscous friction that the MUT sees will change 
as a function of the degree of balls as presented in 
equations (22). In Figure 8(a), it can be seen that the 
emulated speed changes in a way that the motor under test 
experiences the situation as if it was connected to a real 
watt-governor. This interval is magnified in Figure 8(a) to 
show the accuracy of the dynamic load emulation. As the 
most nonlinearity behavior of the desired load occurs in 

this interval, when the controller can follow the reference 
in this interval, it will be able to track the trajectory of other 
changes. Besides, like the linear load, an arbitrary 
disturbance is injected into the system in t = 0.15s to show 
the robustness of the controller. 

 
(a) 

 
(b) 

Figure 8. Emulating nonlinear load with Jef=0.008 and Bef=0.01. 
(a) step reference; (b) the degree of balls. 

Conclusions 
In many fields, such as electric vehicle machines, 

dynamometers are widely used for the assessment of 
electric machines and their drive systems. This reduces the 
time required for prototyping. Dynamic load emulation 
can be attained when the shaft rotates at the given speed by 
the desired load model. In this paper, dynamic load 
emulation in different situations has been achieved. The 
given results show that the load machine can mimic the 
behavior of the desired load model by forcing the shaft to 
rotate at a specific speed. Hence, the accuracy of the 
approach can be evaluated by the error between the 
emulated speed (reference speed) and the actual speed. The 
proposed method is characterized by its simplicity, 
robustness, and low computational. Results show the 
robustness of the approach by rejecting the injected 
disturbance. Also, varying the load parameters, without 
changing the controller shows the robustness of the 
approach under parameter variation and other types of 
uncertainties for both linear and nonlinear loads. 
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