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Abstract 

This paper investigates a new model-based predictive 

method based on the Pontryagin Maximum Principle, to 

control the speed and position of permanent magnet 

synchronous motors. In the proposed controller, the 

linearized mathematical model of the motor during each 

switching time is used to predict the future behavior of the 

control variables. In order to improve the dynamic 

performance of the drive system, a new optimization 

algorithm is proposed in which the optimal control laws 

are obtained by an offline multi-parameter optimization. 

Therefore, the volume of online calculations of the 

processor can be significantly reduced, providing the 

possibility for controlling the drive system with a low-cost 

microcontroller. Besides, voltage and current constrains 

are applied independently in two separate control loops to 

eliminate the complexity of the computation and the 

limitations of the load variation range. The performance 

of the proposed control strategy has been evaluated 

through processor-in-loop experiments, and performed by 

a digital signal processor which is commonly used in the 

motor drive controllers. The results show that suggested 

model predictive control can improve the speed dynamics 

of a traction motor when the load torque changes 

suddenly, compared to conventional predictive methods.    
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Introduction 

Due to recent advances in real-time signal processing, 

various methods of MPC have been developed and 

successfully applied to electric machine drive systems. 

The Finite-Set MPC technique uses a limited number of 

voltage vectors to evaluate the cost function. In general, 

some benefits of this approach are the simplicity of the 

design process, no need for voltage modulator, online 

relatively optimization, and the simplicity in managing 

constraints and nonlinearities of the system [1]. However, 

the obtained voltage vector cannot result in an absolute 

minimum value of the cost function, even with a long 

calculation time or high switching frequency. Besides, 

system constraints do not effectively affect the process of 

designating a voltage vector as the control signal [2].  

In another approach, the cost function is calculated 

through an optimal control method, by considering the 

system model, system initial conditions, and some 

constraints on control variables and inputs [3]. Hence the 

control signals can be obtained as a continuous and 

precise analytical function. But, real-time solving of 

optimal control problems is time-consuming and results 

in a high volume of computation over each sampling time 

interval. In this regard, reference [4-5] used an 

optimization window to solve the constrained optimal 

control problem. The necessary condition to get an answer 

in this way is the reversibility of the Hessian matrix in 

each prediction horizon, whereas the calculation and 

evaluation of this matrix increase the computing time. 

Additionally, system constraints are examined after 

calculating the control signals in each control horizon, and 

by applying receding horizon control, this increases the 

probability that control signals exceed the constraints of 

the drive system. To solve this problem, researchers 

calculated the value of the Hessian matrix at the steady-

state condition, though no optimal performance is 

observed in transient conditions.  

In references [6-7], the active set method and the 

Hilderth’s method have been used in the PMSM drive 

system, to solve the online optimization problem, which 

both require considerable time to identify the active 

constraints. Recently, Bemporad et al. had presented the 

explicit linear quadratic optimization method for solving 

a constrained optimal control problem, in which the 

offline control signals are determined based on the 

position of control variables in the state-space polyhedron 

as a set of piecewise affine functions of the state variables 

vectors [8]. In this method, the trajectory of control 

variables is designed as a map, depending on the initial 

condition and the final state values of the system, so that 

this map leads to an optimal control path. Although, with 

any change in the steady-state conditions, the map will no 

longer be optimal. Reference [9] has applied this mapping 

method to control the speed of a PMSM in no-load 

conditions, and showed that the computational speed can 

be greatly improved, however, under the predetermined 

conditions. In another application reference [10] used a 

trajectory map as a part of the cascaded control process to 

eliminate the offset error caused by the current sensors in 

the speed control of PMSM. Since finding control 

variables in the polyhedron is a time-consuming process, 

reference [11] provides some fast search strategies, 

although because of increasing the vector dimensions of 

control variables, determining the active area conditions 

in the polyhedral state-space will be more complex. 

This paper presents a comprehensive algorithm for 

designing speed and current controllers of the PMSM 

drive system so that it can generate control signals offline, 

and as a set of linear functions of the state variables and 

inputs, to bring significant savings in computing time. The 

proposed algorithm employs a cascaded structure in 

which the speed controller is performed based on the 

optimization window technique, and the current controller 

is designed on the basis of the Pontryagin maximum 

principle. These designs are not just for steady-state 
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conditions, and the system constraints are also particularly 

effective in the process of generating control signals. The 

feasibility of the control process in the real working 

conditions is vitally important; therefore, the necessary 

and sufficient condition for generating control signals by 

planned algorithm is also presented analytically. 

 

Optimal Model Predictive Control Based on the 

Pontryagin Maximum Principle  
This section presents the algorithm which is used for 

solving the optimization problem in this paper based on 

the Pontryagin maximum principle [12].  

Suppose that the nonlinear model of the system, which is 

going to be controlled around an operating point at the 

moment 𝑡𝑖, is linearized by using a Taylor's series 

expansion as follows: 

𝑋•(𝑡) = 𝑓(𝑋(𝑡), 𝑈(𝑡), 𝑡) = 𝐴(𝑋(𝑡𝑖), 𝑡𝑖)𝑋(𝑡) +
𝐵(𝑡𝑖)𝑈(𝑡) + 𝐷(𝑋(𝑡𝑖), 𝑡𝑖)  

𝑋𝑚𝑖𝑛  ≤ 𝑋(𝑡)  ≤ 𝑋𝑚𝑎𝑥  

𝑈𝑚𝑖𝑛  ≤ 𝑈(𝑡)  ≤ 𝑈𝑚𝑎𝑥   

(1) 

in which, 𝑋(𝑡) and 𝑈(𝑡) are the machine state vector and 

system input vector respectively. Moreover, 𝐴(𝑋(𝑡𝑖), 𝑡𝑖) 

is the state matrix, 𝐵(𝑡𝑖) is the input matrix and 

𝐷(𝑋(𝑡𝑖), 𝑡𝑖) is the matrix of constant statements caused by 

linearization and uncontrollable inputs, all at 𝑡𝑖. Then, in 

order for the expressed control system of (1) to be able to 

get to the optimal conditions from the current situation, a 

performance index is considered as follows: 

 𝒥 = 𝑀𝑖𝑛
1

2
[𝑆(𝑋∗, 𝑋(𝑡𝑓)) + ∫ 𝑉(𝑋(𝜏), 𝑋∗, 𝜏)𝑑𝜏

𝑡𝑓

𝑡𝑖
]  (2) 

where  𝑋∗ is the desired state-vector at the end of the 

predictive horizon (at time 𝑡𝑓) and 𝑋(𝑡𝑓) is the state-

vector at 𝑡𝑓. The terminal function of 𝑆(𝑋∗, 𝑋(𝑡𝑓)) is to 

minimize the terminal state error and the integral function 

of 𝑉(𝑋(𝑡), 𝑋∗, 𝑡) is to optimize the tracking path. Based 

on the purpose of the performance index, the functions of 

S and V are defined as follows: 

𝑆 = (𝑋(𝑡𝑓) − 𝑋∗)
𝑇

𝑄𝑓(𝑋(𝑡𝑓) − 𝑋∗)  

𝑉 = (𝑋(𝑡) − 𝑋∗)𝑇𝑄(𝑋(𝑡) − 𝑋∗) + 𝑈𝑇(𝑡)𝑅𝑈(𝑡)  
(3) 

where 𝑄𝑓 ≥ 0, 𝑄 ≥ 0 and 𝑅 > 0 are positive weighting 

matrices. By using the definitions of S and V, the 

Pontryagin H function can be obtained in the optimal 

conditions, as follows: 

ℋ = 𝑉(𝑋(𝑡), 𝑋∗, 𝑡) + 𝜆𝑇(𝑡)(𝑓(𝑋(𝑡), 𝑈(𝑡), 𝑡))  (4) 

in which 𝜆(𝑡) is a quasi-state variable vector with 

dimensions equal to the state vector 𝑋(𝑡). According to 

the Pontryagin maximum principle, the optimality 

requirements are: 

𝑋•(𝑡) =
𝜕ℋ(𝑋∗,𝑋(𝑡),𝑈(𝑡),𝑡)

𝜕𝜆(𝑡)
  

𝜆•(𝑡) = −
𝜕ℋ(𝑋∗,𝑋(𝑡),𝑈(𝑡),𝑡)

𝜕𝑋(𝑡)
  

0   =  
𝜕ℋ(𝑋∗,𝑋(𝑡),𝑈(𝑡),𝑡)

𝜕𝑈(𝑡)
  

(5) 

and the boundary conditions in these equations are: 

𝑋(𝑡𝑖) = 𝑋𝑡𝑖
  

𝜆(𝑡𝑓) = (
𝜕𝑆(𝑋∗,𝑋(𝑡))

𝜕𝑋(𝑡)
)

𝑡𝑓

= 𝑄𝑓(𝑋(𝑡𝑓) − 𝑋∗)  
(6) 

By substituting (1) and (3) into (4), and then applying 

the necessary optimality requirements of (5), the first-

order state-space equations of the system can be found as 

follows: 

𝑋•(𝑡) = 𝐴(𝑋(𝑡𝑖))𝑋(𝑡) − 𝐵𝑅−1𝐵𝑇𝜆(𝑡) +

𝐷(𝑋(𝑡𝑖), 𝑡𝑖)  

𝜆•(𝑡) = −𝑄(𝑋(𝑡) − 𝑋∗) − 𝐴𝑇(𝑋(𝑡𝑖))𝜆(𝑡)  

(7) 

In order to calculate the control signal, (7) can be 

approximated by the forward Euler method. Then it is as 

follows: 
𝑋(𝑡𝑖+1)−𝑋(𝑡𝑖)

ℎ
= 𝐴(𝑋(𝑡𝑖))𝑋(𝑡) − 𝐵𝑅−1𝐵𝑇𝜆(𝑡) +

𝐷(𝑋(𝑡𝑖), 𝑡𝑖)  
𝜆(𝑡𝑖+1)−𝜆(𝑡𝑖)

ℎ
= −𝑄(𝑋(𝑡) − 𝑋∗) − 𝐴𝑇(𝑋(𝑡𝑖))𝜆(𝑡)  

(8) 

that h must be considered small enough to approximate 

the derivatives well. After simplifying and considering 

𝐾1 = (𝐼 +  𝐴(𝑋(𝑡𝑖))ℎ)  and 𝐾2 = 𝐵𝑅−1𝐵𝑇ℎ, predicted 

value for the state vector at the end of the sampling 

interval is as follows: 

𝑋(𝑡𝑖 + 1) = 𝐾1𝑋(𝑡𝑖) − 𝐾2𝜆(𝑡𝑖) + ℎ𝐷(𝑋(𝑡𝑖), 𝑡𝑖)  (9) 

In addition, the value of quasi-state variable vector at the 

beginning of the sampling interval is as follows: 

𝜆(𝑡𝑖) = [(𝐼 + 𝐴𝑇(𝑋(𝑡𝑖))ℎ)𝑄𝑓 + 𝑄ℎ](𝑋(𝑡𝑖 + 1) −

𝑋∗)  
(10) 

where I is an identity matrix. Considering the quasi-state 

boundary conditions and assuming 𝑡𝑓 = 𝑡𝑖 + 1, the (11) 

can be rewritten as follows: 

𝜆(𝑡𝑖 + 1 ) = 𝑄𝑓(𝑋(𝑡𝑖 + 1 ) − 𝑋∗)  (12) 

By substituting (33) and (35) into (34), 𝜆(𝑡𝑖) will be: 

𝜆(𝑡𝑖) = 𝐾4((𝑀−1[𝐾1𝑋(𝑡𝑖) + ℎ𝐷(𝑋(𝑡𝑖), 𝑡𝑖) +

𝐾2𝐾4𝑋∗]) − 𝑋∗)  
(13) 

in which 𝐾3, 𝐾4 and 𝑀 are equal to: 

𝐾3 = (𝐼 + 𝐴𝑇(𝑋(𝑡𝑖))ℎ), 

𝐾4 = [(𝐼 + 𝐴𝑇(𝑋(𝑡𝑖))ℎ)𝑄𝑓 + 𝑄ℎ] = [𝐾3𝑄𝑓 + 𝑄ℎ] and 

𝑀 = 𝐼 + 𝐾2𝐾4  

Since from (5), it will find that 𝑈(𝑡) = −𝑅−1𝐵𝑇𝜆(𝑡), 

and by having the value of 𝜆(𝑡𝑖), the control signal will be 

obtained as follows: 

𝑈(𝑡𝑖) = −𝑅−1𝐵𝑇𝐾4((𝑀−1[𝐾1𝑋(𝑡𝑖) +

ℎ𝐷(𝑋(𝑡𝑖), 𝑡𝑖) + 𝐾2𝐾4𝑋∗]) − 𝑋∗)  
(14) 

If assuming: 

𝐹(𝑋(𝑡𝑖)) = −𝑅−1𝐵𝑇𝐾4𝑀−1𝐾1  

𝐺(𝑋(𝑡𝑖)) = −𝑅−1𝐵𝑇𝐾4𝑀−1(ℎ𝐷(𝑋(𝑡𝑖), 𝑡𝑖) +

𝐾2𝐾4𝑋∗) + 𝑅−1𝐵𝑇𝐾4𝑋∗  

(15) 

then the resulting control signal can be summarized as 

follows: 

𝑈(𝑡𝑖) =  𝐹(𝑋(𝑡𝑖))𝑋(𝑡𝑖) + 𝐺(𝑋(𝑡𝑖))  (16) 

By examining (16) it can be observed that the 

calculation of control signal can be done offline, and 

therefore, online calculations can be done very fast, 

because after receiving state feedback and knowing the 

value of F and G, the value of 𝑈(𝑡𝑖) can be calculated 

straightforwardly. 

Based on the above process, the algorithm of 

generating control signal can be summarized as follows: 

First, obtaining the linear state-space model for the 

desired system. 

Second, defining a performance index based on the 

purpose of the control system. 

Third, finding the Pontryagin H function based on the 

performance index and system model. 

Fourth, attaining the optimality requirements, in 

accordance with the Pontryagin maximum principle. 
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Fifth, applying the forward Euler method to derivative 

approximation for the first-order equations obtained in 

Step 4. 

Sixth, adding boundary conditions to the obtained 

equations (in this case, it is assumed that 𝑡𝑓 = 𝑡𝑖 + 1 and 

the terminal error in the next step will go to zero). 

Seventh, finding predicted state variable (𝑋(𝑡𝑖 + 1)) 

and quasi-state variable vectors(𝜆(𝑡𝑖)). 

Eighth, achieving offline equations of control signals, 

based on predicted state and quasi-state vectors. 

 

Suggested Method for Speed and Current Control 
A model-based optimal control method for real-time 

speed regulation of a PMSM is proposed in this section. 

The goal of this control strategy is to provide an optimal 

amount of torque that allows driving the PMSM at the 

desired speed profile, as required by the train control 

system while satisfying both voltage and current 

constraints. As presented in Figure 1, the architecture of 

the proposed control method consists of an outer loop that 

controls the mechanical dynamics and an inner loop that 

regulates the electrical components of the machine. The 

current constraints are checked in the outer loop by 

limiting maximum torque that can be produced by the 

machine, and the voltage constraints are considered in the 

inner loop based on voltage requirements and limitations, 

for the converter. Therefore, the voltage and current 

constraints can be separately evaluated and satisfied, and 

then the performance of the controller is not affected by 

mutual interferences between them. 

 
Figure 1. The architecture of the proposed control method  

 

At first, a brief overview of the three-phase PMSM 

model with a sinusoidal distribution on the stator and a 

number of permanent magnets on the rotor, in the 

synchronous rotating frame, is presented. The electrical 

equations for this machine are: 

𝑑

𝑑𝑡
[
𝑖𝑞

𝑀𝑥(𝑡)

𝑖𝑑
𝑀𝑥(𝑡)

] = [
−

𝑟𝑠

𝐿
−𝜔𝑟

𝑀𝑥(𝑡𝑖)

𝜔𝑟
𝑀𝑥(𝑡𝑖) −

𝑟𝑠

𝐿

] [
𝑖𝑞

𝑀𝑥(𝑡)

𝑖𝑑
𝑀𝑥(𝑡)

] +

[

1

𝐿
0

0
1

𝐿

] [
𝑣𝑞

𝑀𝑥(𝑡)

𝑣𝑑
𝑀𝑥(𝑡)

] + [−
𝜓𝑓

𝐿

0
] 𝜔𝑟

𝑀𝑥(𝑡𝑖)  

(17) 

where 𝐿𝑑  and 𝐿𝑞 are the stator inductances in (H) on the 

d-axis and the q-axis respectively, 𝑟𝑠  is the stator 

resistance in (Ω), and 𝜓𝑓  is the magnetic flux produced by 

rotor magnets in (Wb). These constant values are the same 

for similar PMSMs. In addition, 𝜔𝑟
𝑀𝑥  is the electrical rotor 

speed in (rad/s), 𝑖𝑞
𝑀𝑥  and 𝑖𝑑

𝑀𝑥  are the stator currents in (A) 

and 𝑣𝑞
𝑀𝑥and 𝑣𝑑

𝑀𝑥  are the stator voltages in (V) on the q-

axis and the d-axis respectively, for the machine x (in a 

multi-machine system). The mechanical dynamics of each 

machine is described by the following equations: 
𝑑

𝑑𝑡
(𝜔𝑟

𝑀𝑥(𝑡)) =
2

𝑝𝐽 
(𝑇𝑒

𝑀𝑥
 
− 𝑇𝐿

𝑀𝑥) −
𝐵𝑚

𝐽 
𝜔𝑟

𝑀𝑥(𝑡)  

𝑑

𝑑𝑡
(𝜃𝑟

𝑀𝑥(𝑡)) = 𝜔𝑟
𝑀𝑥(𝑡)  

(18) 

where 𝜃𝑟
𝑀𝑥  is the rotor position in (rad), as well as 

𝑇𝐿
𝑀𝑥  and 𝑇𝑒

𝑀𝑥 are the load and electrical torques 

respectively, in (N.M), for the machine x. Moreover, p is 

the total number of poles, J is the inertia coefficient in 

(kg.m2), B is the coefficient of viscous friction in (N.M.s), 

and these constant values are the same for similar 

PMSMs. The electrical torque 𝑇𝑒
𝑀𝑥, which is consists of 

the electromagnetic and the reluctance components, can 

be express as:  

𝑇𝑒
𝑀𝑥

 
=

3

2

𝑝

2
(𝜓𝑓 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑

𝑀𝑥(𝑡)) 𝑖𝑞
𝑀𝑥(𝑡)  (19) 

The effects of core saturation and cogging torque are 

neglected, and it is assumed that the magnets are mounted 

on the surface of the rotor, therefore 𝐿𝑑 = 𝐿𝑞 = 𝐿. 

To design current predictive control, the state-space 

model of (17) is used. Let’s rewrite (17) as the following 

equation: 
𝑑

𝑑𝑡
𝑋𝐼

𝑀𝑥(𝑡) = 𝐴(𝑡𝑖) 𝑋𝐼
𝑀𝑥(𝑡) + 𝐵 𝑈𝑉

𝑀𝑥(𝑡) +

𝐷 𝜔𝑟
𝑀𝑥(𝑡𝑖) 𝑋𝐼

𝑀𝑥(𝑡) = [𝑖𝑞
𝑀𝑥(𝑡) 𝑖𝑑

𝑀𝑥(𝑡)]
𝑇
  

𝑈𝑉
𝑀𝑥(𝑡) = [𝑣𝑞

𝑀𝑥(𝑡) 𝑣𝑑
𝑀𝑥(𝑡)(𝑡)]

𝑇
   

(20) 

where 𝑋𝐼
𝑀𝑥(𝑡) and 𝑈𝑉

𝑀𝑥(𝑡) are the state vector and the 

control signals, respectively. The speed variable of 

𝜔𝑟
𝑀𝑥(𝑡𝑖) is measured as the state feedback at the time 

of 𝑡𝑖 , and the control signals are designed to drive the 

machine from its current condition at 𝑡𝑖 to the desired 

condition at 𝑡(𝑖+1). During this tiny time interval, 𝜔𝑟
𝑀𝑥  is 

assumed to be constant, then the control signals are 

matched in the state-space model of machine x in this 

duration. The feedback controller is intended to force the 

machine actual currents to track the current references, 

with the lowest required voltages provided by related 

converters. Hence, the following performance index is 

constructed to minimize with respect to (17), as: 

𝒥𝐼 = 𝑚𝑖𝑛
 𝑈𝑉

𝑀𝑥
{

1

2
[(𝑋𝐼

𝑀𝑥(𝑡𝑓) − 𝑋𝐼
𝑀𝑥∗

)
𝑇

𝑄𝑓(𝑋𝐼
𝑀𝑥(𝑡𝑓) −

𝑋𝐼
𝑀𝑥∗

) + ∫ [(𝑋𝐼
𝑀𝑥(𝜏) − 𝑋𝐼

𝑀𝑥∗
)

𝑇
𝑄(𝑋𝐼

𝑀𝑥(𝜏) − 𝑋𝐼
𝑀𝑥∗

) +
𝑡𝑓

𝑡𝑖

𝑈𝑇(𝜏) 𝑅 𝑈(𝜏) ] 𝑑𝜏]}       𝜏 ∈  [𝑡𝑖  , 𝑡𝑖 + 𝑡𝑓]          

(21) 

in which the 𝑡𝑓 is the finial time of the prediction horizon, 

and 𝑋𝐼
𝑀𝑥∗

 is the desired value of state variables at 𝑡𝑓. The 

weight matrices of 𝑅, 𝑄 and 𝑄𝑓  are chosen so as to be 

diagonal and positive definite.  
To find the desired voltage vector of  𝑈𝑉

𝑀𝑥(𝑡), the 

above optimal problem is solved based on the Pontryagin 

Maximum Principle as described in the appendix. Then, 

by applying the necessary optimality condition, first-order 

state equations are:  

𝑑

𝑑𝑡
[
𝑖𝑞

𝑀𝑥(𝑡)

𝑖𝑑
𝑀𝑥(𝑡)

] = [
−

𝑟𝑠

𝐿
−𝜔𝑟

𝑀𝑥(𝑡𝑖)

𝜔𝑟
𝑀𝑥(𝑡𝑖) −

𝑟𝑠

𝐿

] [
𝑖𝑞

𝑀𝑥(𝑡)

𝑖𝑑
𝑀𝑥(𝑡)

] −

[

1

𝐿
0

0
1

𝐿

] [

1

𝑅11
0

0
1

𝑅22

] [

1

𝐿
0

0
1

𝐿

] [
𝜆1(𝑡)

𝜆2(𝑡)
] + [−

𝜓𝑓

𝐿
𝜔𝑟

𝑀𝑥(𝑡𝑖)

0
]  

(22) 
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where the covector 𝜆 = [𝜆1(𝑡) 𝜆2(𝑡)]𝑇 can be obtained 

by the following equation: 

   
𝑑

𝑑𝑡
[
𝜆1(𝑡)

𝜆2(𝑡)
] = − [

𝑄11 0
0 𝑄22

] ([
𝑖𝑞

𝑀𝑥(𝑡)

𝑖𝑑
𝑀𝑥(𝑡)

] −

[
𝑖𝑞

𝑀𝑥∗
(𝑡)

𝑖𝑑
𝑀𝑥∗

(𝑡)
]) − [

−
𝑟𝑠

𝐿
𝜔𝑟

𝑀𝑥(𝑡𝑖)

−𝜔𝑟
𝑀𝑥(𝑡𝑖) −

𝑟𝑠

𝐿

] [
𝜆1(𝑡)

𝜆2(𝑡)
] 

(23) 

Afterward, by using the forward Euler discretization 

in time, the machine voltages as the control signals at 

every time step of h (where is ℎ = 𝑡𝑖+1 − 𝑡𝑖) are: 

 𝑈𝑉
𝑀𝑥(𝑡𝑖) = −𝑅−1𝐵𝑇𝐾 ((𝑀−1[(𝐼 +

 𝐴(𝑡𝑖)ℎ)𝑋𝐼
𝑀𝑥(𝑡𝑖) + ℎ𝐷 + (𝐵𝑅−1𝐵𝑇ℎ)𝐾𝑋𝐼

𝑀𝑥∗
]) −

𝑋𝐼
𝑀𝑥∗

)    

(24) 

that 𝐾 = [(𝐼 + 𝐴𝑇(𝑡𝑖)ℎ)𝑄𝑓 + 𝑄ℎ] and the matrix M is 

equal to: 

𝑀 =  [
𝑚11 𝑚12

𝑚21 𝑚22
]  

𝑚11 = 1 + (
𝑄11

𝑅11
+ (

1

ℎ
−

𝑟𝑠

𝐿
)

𝑄𝑓11

𝑅11
) (

ℎ

𝐿
)

2

  

𝑚12 =
𝑄𝑓22

𝑅22
(

ℎ

𝐿
)

2

𝜔𝑟
𝑀𝑥(𝑡𝑖)  

𝑚21 = −
𝑄𝑓11

𝑅11
(

ℎ

𝐿
)

2

𝜔𝑟
𝑀𝑥(𝑡𝑖)  

𝑚22 = 1 + (
𝑄22

𝑅22
+ (

1

ℎ
−

𝑟𝑠

𝐿
)

𝑄𝑓22

𝑅22
) (

ℎ

𝐿
)

2

  

(25) 

To prove the reversibility of matrix 𝑀, it is necessary 

to consider the conditions in which the determinant of M 

is zero. The determinant of M can be expressed as follows: 

Det(𝑀) = (1 + (
𝑄11

𝑅11
+ (

1

ℎ
−

𝑟𝑠

𝐿
)

𝑄𝑓11

𝑅11
) (

ℎ

𝐿
)

2

) (1 +

(
𝑄22

𝑅22
+ (

1

ℎ
−

𝑟𝑠

𝐿
)

𝑄𝑓22

𝑅22
) (

ℎ

𝐿
)

2

) +

𝑄𝑓11

𝑅11

𝑄𝑓22

𝑅22
(

ℎ

𝐿
)

4

𝜔𝑟
𝑀𝑥2

(𝑡𝑖)  

(26) 

It is observed that if h is set to be smaller than the 

electric time constant of the under controlled PMSM, 

(ℎ ≤
𝐿

𝑟𝑠
), then the determinant of matrix M is always 

positive. Therefore the matrix reversibility of M can be 

proved and unique control signals can be achieved. 

Moreover, if U exceed the predetermined constraint, the 

rated converter voltage is replaced with a set of calculated 

command to satisfy the voltage constraints. 

 

Speed Predictive Control 

The speed controller regulates the torque component of 

the current command (𝑖𝑞
𝑀𝑥∗

(𝑡)), by evaluating machine 

acceleration and kinetic energy as control variables. 

Besides, the flux producing component of the current 

command (𝑖𝑑
𝑀𝑥∗

) is forced to zero in order to maximize the 

torque density of the traction machine [13]. Any change 

in the speed command or feedback, during machine 

acceleration or deceleration, causes electric power 

oscillations in the drive system. Therefore, to ensure the 

speed reaches its reference value, while the power 

fluctuations and speed variations are minimized, a 

performance index is defined for speed regulator as 

follows:  

𝒥𝑆 = 𝑚𝑖𝑛
𝜔𝑟

•𝑥
{

1

2
∫ [(𝑋𝑆

𝑀𝑥∗
−

𝑡𝑓

𝑡𝑖

𝑋𝑆
𝑀𝑥(𝜏))

𝑇

𝑄𝑆(𝜏) (𝑋𝑆
𝑀𝑥∗

− 𝑋𝑆
𝑀𝑥(𝜏))] 𝑑𝜏}  

(27) 

wherein this equation, 𝑋𝑆
𝑀𝑥(𝜏) = [𝜔𝑟

•𝑥(𝜏) 𝐸𝑐
𝑀𝑥(𝜏)]𝑇 ,

𝑋𝑆
𝑀𝑥∗

= [0
1

2
𝐽𝑡 (𝜔𝑟

𝑀𝑥∗
(𝑡))

2
]

𝑇 

 and 𝜔𝑟
•𝑥(𝜏) =

𝑑

𝑑𝑡
(𝜔𝑟

𝑀𝑥(𝜏)). In 

addition 𝐸𝑐
𝑀𝑥 is the kinetic energy, 𝜔𝑟

•𝑥(𝜏) is the slope of 

the angular speed and 𝐽𝑡
𝑀𝑥 is the total moment of inertia 

of machine x (load inertia plus machine inertia). With 

considering 𝑄𝑆 as a positive definite weighting matrix, 

and after simplifying (15) it can be described as follows: 

𝒥𝑆 = 𝑚𝑖𝑛
𝜔𝑟

•𝑥
{

1

2
∫ [𝑄𝑆

1,1(𝜔𝑟
•𝑥(𝜏))

2
−

𝑡𝑓

𝑡𝑖

𝜔𝑟
•𝑥(𝜏) (𝑄𝑆

1,2(𝜏) + 𝑄𝑆
2,1(𝜏)) (𝐸𝑐

𝑀𝑥∗
− 𝐸𝑐

𝑀𝑥(𝜏)) +

𝑄𝑆
2,2(𝜏) (𝐸𝑐

𝑀𝑥∗
− 𝐸𝑐

𝑀𝑥(𝜏))
2

] 𝑑𝜏}  

(28) 

Minimizing this integral cost function with respect to the 

speed slope of 𝜔𝑟
•𝑥  results in the optimal speed slope as 

follows: 

(
𝑄𝑆

1,1

𝑄𝑆
1,2(𝑡)+𝑄𝑆

2,1(𝑡)
) 𝜔𝑟

•𝑥(𝑡) =
2𝐽𝑡

𝑝2 ((𝜔𝑟
𝑀𝑥∗

(𝑡𝑖))
2

−

(𝜔𝑟
𝑀𝑥(𝑡𝑖))

2
)  

(29) 

where 𝜔𝑟
𝑀𝑥 ∗

(𝑡𝑖) and 𝜔𝑟
𝑀𝑥(𝑡𝑖) are the reference and 

measured angular speeds for machine x, respectively.  

If the elements of the weight matrix of 𝑄𝑆  are chosen 

as 𝑄𝑆
1,2(𝑡) =

2

𝑝
∆𝑡2,  𝑄𝑆

2,1(𝑡) =
1

2𝑇𝐿(𝑡𝑖)
 and 𝑄𝑆

2,2 being an 

arbitrary value, then 𝑄𝑆  is a positive definite matrix and 

(17) can be rewritten as: 
2

𝑝
𝜔𝑟

•𝑥(𝑡)𝑇𝐿(𝑡𝑖)∆𝑡2 =
2𝐽𝑡

𝑝2 ((𝜔𝑟
𝑀𝑥∗

)
2

− (𝜔𝑟
𝑀𝑥(𝑡𝑖))

2
)  (30) 

By applying the PMSM mechanical equation of (18) 

and (30) to the electrical torque equation of (19), the 

torque component of stator current command can be 

found as follows: 

𝑖𝑞
𝑀𝑥∗

(𝑡𝑖) =
8𝐽.𝐽𝑡

𝑀𝑥

∆𝑡2.3.𝑝.𝜓𝑓.𝑇𝐿
𝑀𝑥(𝑡𝑖)

((𝜔𝑟
𝑀𝑥∗

)
2

−

(𝜔𝑟
𝑀𝑥(𝑡𝑖))

2
) +

8.𝐵𝑚

3.𝑝2.𝜓𝑓
𝜔𝑟

𝑀𝑥(𝑡𝑖) +
4

3.𝑝.𝜓𝑓
𝑇𝐿

𝑀𝑥(𝑡𝑖)  
(31) 

When 𝑖𝑞
𝑀𝑥∗

 exceed the predetermined constraint, the rated 

current value is replaced with the calculated command, 

and therefore the current constraints are satisfied, 

independently. Consequently, the speed changes only 

affect the current command, and the voltage constraints 

are independently limited by the current controller loop.  

 

Torque Estimation Process 

The load torque can be estimated by considering the 

mechanical machine model of (18) and (19) that can be 

rewritten as follows: 

𝑇𝐿
𝑀𝑥 =

3

2

𝑝

2
𝜓𝑓 . 𝑖𝑞

𝑀𝑥(𝑡) − 𝐽
2

𝑝  

𝑑

𝑑𝑡
(𝜔𝑟

𝑀𝑥(𝑡)) −

𝐵𝑚
2

𝑝
𝜔𝑟

𝑀𝑥(𝑡)  
(32) 

Then, using the Backward Euler Approximation for time 

discretization, (15) can be rewritten as follows: 

𝑇𝐿
𝑀𝑥(𝑡𝑖) =

3

2

𝑝

2
𝜓𝑓 . 𝑖𝑞

𝑀𝑥(𝑡𝑖) −

𝐽
2

𝑝  
(

𝜔𝑟
𝑀𝑥(𝑡𝑖)−𝜔𝑟

𝑀𝑥(𝑡𝑖−1)

ℎ
) − 𝐵𝑚

2

𝑝
𝜔𝑟

𝑀𝑥(𝑡)  
(33) 

To increase the accuracy of discretization in the 

implementation, the parameter of 𝑇𝐿
𝑀𝑥 is set to the average 

value of its 10 previous samples as follows:  

𝑇𝐿
𝑀𝑥(𝑡𝑖) =

1

10
∑ 𝑇𝐿

𝑀𝑥(𝑡𝑖−𝑧)10
𝑧=0   (34) 
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Impact of Independence Constraints on the Control 

Process 

If a unified MPC strategy has been designed for the 

proposed drive system, the three state variables 

of 𝑖𝑑
𝑀𝑥, 𝑖𝑞

𝑀𝑥 and 𝜔𝑟
𝑀𝑥  for the PMSM have to be controlled 

by two control signals of 𝑣𝑑
𝑀𝑥   and 𝑣𝑞

𝑀𝑥. In such 

circumstances, the control signals are highly dependent on 

the machine speed, and any change in the speed command 

can cause large variations for both 𝑣𝑑
𝑀𝑥 and 𝑣𝑞

𝑀𝑥. Then, 

when the speed command changes, these control signals 

are continually confined to the upper and lower bounds by 

the defined system constraints, and this will cause the 

controller to deviate from the optimal path. To overcome 

this issue, most previous studies had suggested that a PI 

controller, as a part of the cascade control process, 

determined  𝑖𝑞
𝑀𝑥 command [13]. However in this mode, 

only the error between the reference and the measured 

speed value reaches zero, regardless of the energy amount 

required to change the speed, and irrespective of the 

appropriate speed gradient to produce proper dynamic 

behavior for the machine. Therefore, the command 

signals may have unpredictable oscillations and still, the 

controller cannot provide the optimal path for the state 

variables.  

In described proposed MPC, the command 𝑖𝑞
𝑀𝑥∗

 are 

adjusted based on the value of changes in the speed 

command, and the speed gradient at each sampling 

interval is determined as a fraction of maximum allowable 

kinetic energy. In fact, the controller serves the minimum 

time to reach the final value by optimizing the speed 

gradient based on the designated cost function. When the 

calculated speed gradient is so fast that the speed cannot 

reach the specified value within the very short period of 

switching time, the nominal current limit will be selected, 

which means that the controller uses the rated capacity of 

the machine. Thus, the machine will not be over-powered, 

and at the same time the speed fluctuations will be 

eliminated since the limitations of both kinetic energy and 

winding currents are considered in the control procedure. 

As a result, no significant fluctuations will be observed, 

and moreover, when the current command is limited by 

system constraints, the resulting command will be the best 

possible way to change the machine speed. 

 

Simulation Studies 

To demonstrate the capability of the proposed controller, 

the circuit models of a traction PMSM and power 

electronic converters were simulated in the PSIM 

software, while the control algorithm was managed with 

the Processor-in-Loop (PIL) Module connected to the 

TMS320F28335. The specifications of simulated PMSM 

was obtained from the “XML-SB04A series” datasheet 

for the PM motors of the LS Company. These 

specifications are reported in Table 1. The switching 

method is based on the symmetrical SVM switching 

pattern. The converters ratings are chosen based on the 

future test set-up, as shown in Table 2. In the internal and 

external control loops ℎ parameter is determined as        

ℎ = 0.125 × 10−3, and the weighting matrices are 

considered as follows: 

𝑅 = [
1 0
0 1

]       𝑄 = [
15 0
0 85

]        𝑄𝑓 = [
280 0

0 5800
] 

Table 1. Specifications of XML-SB04A PMSM Series 

Machine Parameter Symbol Value 

Rated Power Prate 400Watt 
Rated Current Irate 2.89A 
Number of Poles p  8  

Stator Resistance per 

Phase 
Rs 0.82Ω 

Stator Inductance Ld = Lq 3.66mH 

Permanent magnet 

magnetic flux 
ψf 0.0734wb 

Rated Speed Nsyn 3000r.p.m 

Rated Torque Trate 1.27 N.m 

Maximum 

instantaneous torque 

Tmax 3.82 N.m 

Moment of inertia J  321 × 10−8  Kg.m2

 

friction coefficient Bm 0.6 × 10−6   N.m.Sec
 

 
Table 2. The Rating of Converters 

Machine Parameter Symbol Value 

DC side voltage VDC = VSC 173V 
Switching Frequency FSW 5kHz 

On mode Switch Resistance RDS(on) 
 0.019Ω 

 

 

The ∆𝑡  in the speed controller is equal to 0.0118, and 

the sampling frequency for the feedback signals is 20𝐾𝐻𝑧.  

The simulation results for suggested MPC algorithm, 

including speed, torque and currents dynamics for the 

PMSM are presented in Figure 2. At first, the PMSM is 

loaded with its rated torque, and its speed is increased 

from stop mode to the nominal value. Then, at time 

t1=0.1S, a 70% step reduction occurred in the load torque. 

And finally, at time t2=0.15 S, the speed command returns 

to 50% of the nominal value and the load torque returns 

to the nominal value, concurrently and stepwise. 

It is observed that machine torque has reached a steady 

state after 5 milliseconds after start-up. When the torque 

has a step reduction of 70% at rated speed, output power, 

appearing on the machine shaft, could lead to severe 

fluctuations in machine speed. However, by applying 

proposed MPC, the machine speed only increased by 100 

RPM (3.333%), and then it returns to the synchronization 

at a new optimal rotor angle. Moreover, machine torque 

has reached the load torque at a short period of time, 

reducing undesirable machine acceleration. In this case, 

the controller tries to slow the speed down rapidly by 

moving the machine to the braking area. However, as the 

speed approaches the specified reference speed, the 

controller does not impose any oscillating transient in the 

presence of increased load, and the control process is well 

performed by selecting the appropriate control signals at 

any given moment.  

It is obvious that the reduction of the calculated 

optimal slope is perfectly proportional to the speed rate at 

which the machine speed approaches its nominal value. 

Furthermore, the simulation results show that the 

proposed model-based speed control can provide 

improved closed-loop performance and can yield a fast 

response with small overshoots in torque and speed 

tracking. Therefore, as the suggested control laws are 

achieved by a simple and fast implementation, the 

controller has been also minimal in terms of memory 

allocation during simulation studies. 
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Conclusions 

In this paper, a new model-based optimal control has been 

developed and implemented on a simulated drive system. 

To improve the control dynamic performance, the control 

laws were designed as a set of piecewise affine functions 

from the control signals based on an offline procedure, 

and the voltage and current constrain were individually 

applied through two separate control loops. Therefore, the 

designed MPC based controller is a constrained method 

and the control signals can be obtained as a set of linear 

functions from the feedback states. The mathematical 

analyses show that the computation time of proposed 

MPC can be significantly reduced in comparison with the 

other MPC techniques, providing the possibility of 

controlling the drive system with a low-cost 

microcontroller. Moreover, from the simulation results,  it 

is observed that while the controller uses a local linearized 

system model, it can withstand the non-measurable 

disturbances.   
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Figure 2. Simulation results: speed, torque and currents dynamics 

of the PMSM controlled by the proposed MPC method  


