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ABSTRACT

In this paper addresses a new scalarization technique for solving multiobjective optimization problems.
Theorems are provided on the relation of  (weakly,  properly)  efficient  solutions of  the multiobjective
optimization problem and optimal solutions of the proposed scalarized problems. All the provided results
are established with no convexity assumption.
Keywords : Multiobjective optimization, proper efficiency, scalarization.

1. INTRODUCTION

One  part  of  mathematical  programming  is  multiobjective  optimization  problem  when  the
conflicting  objective  functions  must  be  minimized  or  maximized  over  a  feasible  set  of
decisions. Since it is usually not possible to optimize the conflicting functions together, one can
only hope to find a trade-off, or compromise, solution. The scalarized problem can then be
solved  by  using  standard  single-objective  optimization  techniques.  Therefore  the  scalarized
problem can be solved by using standard single objective optimization techniques.
There are many recent publications on applications of MOPs.
Some of the parameter-based scalarization approaches that are widely employed including the
weighted-sum method, the ε-constraint method, the normal boundary method and the Pascolett–
Serafini method [5, 2-8, 10-12]. 
Presented an extension of this  approach and investigated the relations between approximate
optimal solutions of the proposed method and ε-properly efficient solutions. More recently, by
including  surplus  variables  in  the  constraints  and  penalizing  the violations  in  the  objective
function of the Pascoletti–Serafini scalarization problem, Akbari et al. [1] presented the flexible
Pascoletti–Serafini  scalarization  method.  Moreover,  by  including  slack  variables  in  the
constraints  of  the  Pascoletti–Serafini  scalarization  problem,  they  obtained  necessary  and
sufficient conditions for proper efficiency.
Gaznavi et al. [9] presented an extension of this approach and investigated the relations between
approximate  optimal  solutions  of  the  proposed  method  and  ε-(properly,  weakly)  efficient
solutions.
The algorithm may solve some redundant PS problems and does not generate a well-spread
distribution  of  non-dominated  points  in  convex  MOPs.  Burachik  et  al.  [2]  proposed  the
weighted constraint method for solving bi-objective problems that may generate non-Pareto-
optimal solutions.
Now,  in  the  present  paper,  a  flexible  weighted-constraint  scalarization  technique,  which  is
applicable for general multiobjective optimization problems is proposed. By this scalarization
technique, easy-to-check statements for (weak, proper) efficiency are obtained.
The remainder of this article is organized as follows. in Section  2 some basic definitions and
preliminaries are provided. In Section 3, the suggested scalarization approach is described.
In  Section  4,  relations  between  optimal  solutions  of  the  proposed  approach  and  (weakly,
properly) efficient solutions of the related MOP are investigated. The conclusions are derived in
Section 7.
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2. PRELIMINARIES

Let  X ⊆Rn be  a  nonempty  set  and  f : X→Rp with  p≥2 be  a  vector-valued  function.  A
multiobjective optimization problem may be written as

MOP :min f ( x )=( f 1 ( x ) ,…, f p(x ))
s . t . x∈ X .

The set of all attainable outcomes, denoted by Y , is defined as the image of X  under f . In fact,
Y=f (X)={y ∈Rm: y=f (x ) for somex∈ X }.
The natural ordering cone is defined as follows:

R≧
p ={x∈ Rp : xi≥0 ,i=1,…, p}.

For any y , ŷ∈ Rp:
y< ŷ if and only if y i< ŷ i ∀ i=1,…, p ,
y≦ ŷ if and only if y i≤ ŷ i ∀ i=1 ,… , p ,
y ≤ ŷ  if and only if y i≤ ŷ i ∀ i=1 ,… , p and y ≠ ŷ .

Definition 2.1 A feasible solution x̂∈ X  is called
(i) an efficient (a Pareto optimal) solution of MOP, if there is no other  x∈ X such that

f ( x )≤ f ( x̂ ),
(ii) a weakly efficient solution of MOP, if there is no other x∈ Xsuch that f ( x )< f ( x̂ ),
(iii) a  strictly  efficient  solution  of  MOP,  if  there  is  no  other  x∈ X , x≠ x̂such  that

f ( x )≦ f ( x̂ ).

Definition 2.2:  A feasible  solution  x̂∈ X  is  called a  properly  efficient  (a  properly  Pareto
optimal) solution to MOP if it is efficient and there exists a real positive number M  such that
for  each  i∈ {1 ,… , p } and  each  x∈ X  satisfying  f i ( x )< f i ( x̂ ),  there  exists  an  index
j∈ {1,…, p } with f j ( x̂ )< f j ( x ) such that

f i ( x̂ )−f i ( x )
f j ( x )−f j ( x̂ )

≤M .

We denote the set of efficient, weakly efficient and properly efficient solutions by X E, XWE and
X PE, respectively. The images of efficient, weakly efficient and properly efficient solutions in
the image space Rp are called nondominated, weakly nondominated and properly nondominated
solutions and are denoted by Y N, YWN and Y PN, respectively.

A single objective optimization problem is demonstrated as follows:
SO :min g(x )
s . t . x∈ X ,

where g :X→R.

Definition 2.3 : A feasible solution x̂∈ X  is said to be
(i) an optimal solution of Problem (SO), if g ( x̂ )≤ g(x) for all x∈ X ,
(ii) a strictly optimal solution of Problem (SO), if g ( x̂ )<g (x) for all x∈ X .

3. THE FLEXIBLE WEIGHTED-CONSTRAINT SCALARIZATION METHOD

Let  be  given  parameters.  Burachik  et  al.  [2]  proposed  the  following  scalar  optimization
problem, called the weighted-constraint technique for generate an approximation of the Pareto
front in multi-objective problem:
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Pw
k :minwk f k ( x )

s . t .
w i f i (x )≤wk f k ( x ) ,∀ i ≠ k

x∈ X .

By the scalarized problem Pw
k , sufficient conditions for  (properly, weakly) efficient solutions of

MOP cannot be obtained. Therefore, an extension of the direction scalarization problem Pw
k  is

introduced.

Let  w∈ R≧
p  and  ∑

i=1

p

wi=1. The  flexible  weighted-constraint  scalarization  problem  is

formulated as follows:

FWC :minwk f k ( x )+∑
i=1
i ≠k

p

μ i si

s . t .
wf ( x )−s−max

x∈ X
{w k f k ( x ) }∈ R≧

p ,

x∈ X , s∈ R≧
p , μ∈ R≧

p ,
Where μi≥0 are nonnegative weights.

4. CHARACTERIZING (WEAKLY, PROPERLY) EFFICIENT SOLUTIONS

In this section,  based on the scalarized problem (FWC),  sufficient  conditions  for  obtaining
(weakly)  efficient  solutions  and  properly  efficient  solutions  of  the  MOP are  provided  and
necessary and sufficient conditions are obtained for efficient solutions. The following theorem
provides a sufficient condition for weak efficiency utilizing the scalarized problem (FWC).

Theorem 4.1 Let ( x̂ , ŝ ) be an optimal solution of the scalarized problem (FWC). If μ≧0 and
w≧0 then x̂ is a weakly efficient solution of the MOP.

Proof  Suppose  that  x̂ is  not  weakly  efficient.  Then,  there  is  some  x∈ X  such  that
f i ( x )< f i ( x̂ ) ,∀ i=1,2,…, p. Since w≧0, we can write w i f i (x )<wi f i ( x̂ ) ,∀ i≠ k . Since ( x̂ , ŝ ) is

an  optimal  solution  of (NM),  then  w i f i ( x̂ )−ŝi≤max
x∈X

{wk f k ( x ) } ,∀ i ≠ k,  so

w i f i ( x̂ )−ŝ i≤max
x ∈X

{wk f k ( x ) } ,∀ i ≠ k then  ( x , ŝ) is feasible for (FWC) with an objective value

that is smaller than that of ( x̂ , ŝ ). This contradicts the optimality of ( x̂ , ŝ ).

Under  the  uniqueness  assumption  of  the  optimal  solutions,  the  following stronger  result  is
obtained for efficiency.

Theorem 4.2  Let  ( x̂ , ŝ) be an optimal solution of the scalarized problem (FWC) with μ≧0,
w≧0 and x̂ is unique, then x̂ is a strictly efficient solution of the MOP.

Proof Assume that x is such that f (x)≦ f ( x̂). So, ( x , ŝ ) is a feasible solution of (FWC) with
w k f k ( x )+∑

i ≠k
μ i ŝi≤wk f k ( x̂ )+∑

i ≠ k
μi ŝi, uniqueness of the optimal solution implies that x= x̂

.Therefore x̂ is a strictly efficient solution of the MOP.
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In  the  following theorem,  utilizing  the scalarized problem (FWC),  a  sufficient  condition  is
obtained for efficient solutions of the MOP.

Theorem 43 Let ( x̂ , ŝ ) be an optimal solution of the scalarized problem (FWC). If μ>0, w>0
and ŝ>0, then x̂ is an efficient solution of the MOP.

Proof Suppose to the contrary that x̂ is not an efficient solution of the MOP. So, there exists a 
feasible solution x∈ X  such that

f i ( x )≤ f i ( x̂ ) ,∀ i=1,2 ,…, p ,
and for some j∈ {1,…, p }

f j ( x )< f j ( x̂ ) .
Therefore, we have

w i f i (x )−ŝi≤max
x∈X

{wk f k ( x ) } ,∀ i ≠ j , k ,

and
w j f j (x )−ŝ j<max

x∈X
{wk f k ( x ) } .

Without loss of generality, we can assume  j ≠ k , so we define

si≔{ŝi−α if i= j
ŝi if i≠ j

,∀ i∈ {1 ,…, p }∖ {k } .

Such that ŝ j−α>0 and w j f j (x )−ŝ j+α ≤max
x∈X

{wk f k ( x ) }. Therefore, (x , s) is feasible for 

(FWC) with w k f k ( x )+∑
i ≠k

μ i si≤wk f k ( x̂ )+∑
i ≠ k

μi ŝi. This contradicts the optimality of ( x̂ , ŝ).

In  the  next  theorem,  the  relationship  between  optimal  solutions  of  the  scalarized  problem
(FWC) and properly efficient solutions of the MOP is investigated.

Theorem 4.4 Let x̂ be an efficient solution of the MOP. Then, there exist μ≧0, w≧0 and
ŝ≧0 such that ( x̂ , ŝ ) is an optimal solution (FWC) for all k∈ {1,2,…, p } and
w i f i ( x̂ )−ŝ i=max

x∈X
{wk f k ( x ) } ,∀ i≠ k .

Proof  Set μi=∞,∀ i≠ k  and w≧0. Since w j f j ( x̂ )−ŝ j=max
x∈ X

{w k f k ( x ) } ,∀ i≠ k. So ( x̂ , ŝ) is a 

feasible of (FWC). We claim that ( x̂ , ŝ ) is also an optimal solution of (FWC). Assume that there
is a feasible solution ( x , s ) for (FWC) with μi=∞,∀ i≠ k  and w≧0 such that

w k f k ( x̂ )+∑
i ≠k

μ i ŝi>wk f k ( x )+∑
i ≠ k

μi si ,

(1)f k (x )< f k ( x̂ ) .

Since ( x , s) is a feasible solution of (FWC), so we have
w i f i (x )−s i≤max

x∈X
{wk f k ( x ) }=wi f i ( x̂ )−ŝi ,∀ i ≠ k

w i f i (x )≤wi f i ( x̂ ) ,∀ i≠ k
Since w>0, we have

(2)f i ( x )≤ f i ( x̂ ) ,∀ i≠ k
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According to relations (1) and (2) we have
f ( x )≤ f ( x̂ ) ,

a contraction to x̂ being an efficient solution of the MOP.

Next,  we  state  an  easy  approach  to  check  the  sufficient  condition  for  identifying  properly
efficient solutions among the solutions of (FWC). For the proof we need a technical lemma
relating properly efficient solutions of the MOP with the feasible set of (FWC) and the set X,
respectively. This lemma is very similar to the idea in Ehrgott and Ruzika (2008). 

Lemma  4.1  Let  x̂ be  a  properly  efficient  solution  of  the  MOP  with  feasible  set
XM={x∈ X :wi f i ( x̂ )≤max

x∈ X
{w k f k ( x ) } ,∀ i=1 ,…, p }. Then  x̂ is a properly efficient solution

of the MOP with feasible set X .

Proof Suppose that x̂ is not a properly efficient solution. Then consider a sequence {M α } with
M α>0 and lim

α→∞
M α=∞.

For any  M α,  there is  xα∈ X  and an index  i with  f i (xα )< f i ( x̂ ) such that  for all  j ≠ i with
f j ( x̂ )< f j (xα ), we have 

(1)
f i ( x̂ )−f i (xα)
f j (xα )−f j ( x̂ )

>M α .

We choose a subsequence of {M α } such that index i is fixed for each  α . We assume that for
each α  J= { j∈ {1 ,…, p }: f j ( x̂ )<f j (xα ) } is constant. According to relation (1) and since f (X )
is bounded, we have

lim
α→∞

f j ( xα )=f j ( x̂ ) .

So, there is α 0>0 such that
w j f j ( xα )<max

x∈ X
{w k f k ( x ) }+ ŝ j ,∀α>α0 ,∀ j∈J .

Thus, {xα }α>α0
⊆ XM . This contradicts the proper efficiency of x̂ for the MOP with feasible set

XM.

Theorem 4.5 Let ( x̂ , ŝ) be an optimal solution of the scalarized problem (FWC). If μ>0, w>0
and ŝ>0, then x̂ is an properly efficient solution of the MOP.

Proof According to Theorem 2.3 x̂ is an efficient solution of the MOP for any μ>0 and w>0.
Since ( x̂ , ŝ) is an optimal solution of the scalarized problem (FWC), we have 

w k f k ( x̂ )+∑
i ≠k

μ i ŝi=wk f k ( x̂ )+∑
i≠ k

μi(wi f i ( x̂ )−max
x∈X

{wk f k ( x ) }).
So, is an optimal solution of the weighted sum problem

min {∑i=1
p

μiwi f i ( x̂ ) : μiwi=1, wi f i ( x̂ )≤max
x∈ X

{w k f k ( x ) }}.
According to Geoffrion's theorem, x̂ is a properly efficient solution of the MOP with additional
constraints. By lemma 2.1 x̂ is a properly efficient solution of the MOP. 

5. CONCLUSIONS
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We have proposed a new scalarization technique for solving multiobjective optimization has
been proposed. Using the proposed approach, necessary and sufficient conditions for (weakly,
properly) efficient solutions were established.
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