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Abstract 

With advancing technology and using of 

automatic cars, the need for detecting road 

problems increases.  Real time image processing 

and machine learning based pothole detection of 

roads is presented suitable for road monitoring 

drones. The camera taken videos are converted to 

frames, and YOLO V8 model, with manually 

labeled pictures, is used for training. Simulation 

results shows that the model can successfully 

identify potholes after the successful training of 

the system. Coordinates of the detected potholes 

are sent via SMS, or to a predefined server 

according to the user choice. 

Keywords : YOLO, Deep Learning, Image 

Processing, Pothole Detection. 

 

1. Introduction 

A pothole is a type of road surface defect that forms 

when water penetrates into cracks in the pavement, 

freezes, and expands. This expansion causes the 

pavement to break apart, creating a hole. As vehicles 

drive over these weakened areas, the pressure further 

breaks down the surface, enlarging the hole and 

forming a pothole. Potholes can vary in size and depth 

and often create hazards for drivers and pedestrians, 

potentially causing damage to tires, wheels, 

suspension systems, and other parts of a vehicle and 

increasing the risk of accidents caused by swerving to 

avoid potholes or losing control when hitting one. 

Also, hitting a pothole can be an uncomfortable 

experience for passengers. 

Repairing potholes typically involves cleaning the 

damaged area and filling it with new asphalt or other 

suitable materials, but first of all there must be a way 

to detect them, especially to be used by automatic 

cars[1,2]. Several ways are used for detection, such as 

human reports, using accelerometer sensors of cars, 

lidar systems, machine learning based algorithms, and 

etc. While traditional methods for pothole detection 

are costly and time consuming [3], a new method, 

YOLO, solves this issue using machine learning to 

provide real-time warnings to drivers[4]. This system 

has shown promising results, with an accuracy of 

94.5% [5]. YOLO, or You Only Look Once, is a real-

time object detection system with a range of 

applications [6], from medical object detection, face 

recognition,behaviour and object detection, motion 

tracking, emotion tracking, handwriting detection [7-

0] to object detection in challenging weather 

conditions, particularly for self-driving cars[10]. 

These studies collectively demonstrate the versatility 

and potential of YOLO in various fields. 

In this work, vision-based detection of potholes is of 

interest supposing a camera equipped drone. The 

drone has to take video, analyze the road surface, 

detect potholes using machine learning, and report the 

position of road damage to a center. To increase the 

speed frames with no object are eliminated from 

process step. The proposed code can also be used by 

drivers, as well as roads controlling and monitoring 

centers. To implement the idea YOLO V8 is used.  

The training process is done using Roboflow 

platform, which is described in the first step in the 

following. Then Custom training is brought. Next part 

includes code flow chart along with its step by step 

description.  After that, simulation results of test on 

real camera film, is discussed to prove the code. 

2. Integration with Roboflow 

To start pothole detection, first of all, there must be 

a collection of pictures to start training. In this 

research, the training images were extracted from a 



video. The video was processed to convert it into 

multiple frames, and then used for training. 

Training is done using Roboflow which is a 

comprehensive platform that simplifies the process of 

creating, training, and deploying computer vision 

models. It provides tools for data annotation, data 

augmentation, and dataset management to make it 

easier to create high-quality datasets for machine 

learning projects [11]. After uploading the images, the 

user can use bounding boxes and polygons in the 

tagging section to lable them. Roboflow automatically 

divides the dataset into training, validation, and testing 

sets. Then YOLOv8 model was trained on the labeled 

images using Roboflow's platform providing 

performance metrics and visualizations. 

 

3. Custome Training 

Google Colab is used for custom training of the 

YOLOv8 model. In this environment, using training 

dataset images, the YOLOv8 model was trained for the 

segmentation task. 

!yolo task=segment mode=train model=yolov8s-seg.pt 

data={dataset.location}/data.yaml epochs=100 

imgsz=640 

The steps are as follows: 

1. First, the yolov8s-seg.pt model file was 

downloaded. This file contains the initial 

weights for the YOLOv8 segmentation 

model. 

2. The data file in data.yaml format, which 

includes the paths to the training images and 

their labels, was loaded. 

3. The model was trained using the YOLO 

command with parameters specifying the 

number of training epochs and the image size 

(imgsz). 

4. After completing the training, the trained 

model was saved as a .pt file, which can be 

used for evaluation and prediction. 

 

4. Code Flow chart 

The procedure of the code is shown step by step in 

Fig.1.  

 

 

Fig  1 Code flow chart 

After image labeling and custom training, it’s time 

to analyze the real camera film taken from the road In 

block (1) the Raspberry Pi camera is initialized and set 

to capture images at a resolution of 1020x500 pixels. 

camera = PiCamera() 

camera.resolution = (1020, 500) 

rawCapture = PiRGBArray(camera, size=(1020, 500)) 

 

In the image processing block, (2), the video is read 

frame by frame and every 10 frames, a frame is 

selected for processing. That frame is then resized to 

1020x500 dimensions for faster processing:  

    img = cv2.resize(img, (1020, 500)) 

    h, w, _ = img.shape 

 

Next, a deep learning model, YOLO, is used to 

identify, predict, extract bounding boxes and masks, 

and categorize in the image. The detected objects are 

processed to extract bounding boxes and masks. 

    for r in results: 

        boxes = r.boxes 

        masks = r.masks 

 

In block (3), matching of frames with trained 

images is analyzed. the model results are processed to 

extract masks and bounding boxes:  

 for seg, box in zip(masks.data.cpu().numpy(), boxes): 
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The masks are resized to match the frame 

dimensions and contours of each mask are identified. 

 seg = cv2.resize(seg, (w, h)) 

 contours, _ =  

cv2.findContours((seg).astype(np.uint8), 

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 

 

Contours and class information are drawn on the 

image, and the processed frames are saved in a 

specified directory. For mask processing, OpenCV 

techniques are utilized. 

cv2.polylines(img, [contour], True, color=(0, 0, 255), 

thickness=2) 

cv2.putText(img, c, (x, y - 10), 

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) 

 

In this research, the optimization of image 

processing for object detection is investigated using 

the Raspberry Pi camera and the YOLO model. One of 

the main goals of this research is to increase the 

processing speed by rejecting the frames in which no 

objects are detected. This process causes only frames 

with objects to be processed, thus improving system 

speed making it suitable for real time applications. 

Finally, in block (4), the coordinates of the detected 

object should be reported. There are two possibilities: 

sending via SMS, or sending to the server.  

To send via SMS, first the communication settings 

are made with the SIM card device. Then, a function 

is defined to send an SMS that sends the coordinates 

and frame number of the identified objects to the 

specified mobile number. Using AT commands, this 

function sends SMS containing x and y coordinates 

and frame number to the specified mobile number. 

First, the SMS mode is activated and then the SMS is 

sent. 

message = f"Frame {frame_number}: Object detected at x={x}, 

y={y}" 

send_sms(phone_number, count, x, y) 

 

To send the processed images to the server, first the 

IP address and server port settings are made.  

 S=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) 

 s.sendto(x_as_byte, (server_ip, server_port)) 

After image processing and object detection, the 

image is converted to JPEG format using the OpenCV 

library. The cv2.imencode function converts the image 

to an array of bytes. The compressed image is then 

converted to binary codes, so that it can be sent over 

the network. This is done using the pickle library. At 

the final step, the image is sent to the server using the 

UDP socket. The most important features are: 

1- Compressing the image reduces data size, 

convenient for faster transmission, 

2- Using UDP protocol, reducing the delay of 

data transmission, 

3- Flexibility in adjusting the image 

compression quality according to application. 

The YOLOv8 model is one of the most advanced 

and recent object recognition models, significantly 

improving recognition accuracy and speed using a 

lighter neural network architecture and optimization 

techniques like pruning and quantization. This model 

excels due to the integration of cutting-edge deep 

learning techniques and advanced optimizations, 

allowing it to perform exceptionally well under 

various conditions, including the presence of noise in 

the images.  

5. Simulation Results 

A video is used as input of the code to see its 

performance. The video is chopped into frames and for 

example in one of its frame there are some potholes. 

Fig. 2 shows the code result for such a frame. 

 

 
Fig  2.  Simulation result for a frame of video with detected potholes 

As shown in Fig. 2, five objects (road potholes) were 

detected in the image. Detected Objects Coordinates 

are as follows: 

Processing Speed: Preprocess time: 0.0ms / Inference 

time: 100.8ms /Postprocess time: 883.1ms 



For frame 10, multiple objects (road potholes) are 

detected with the following coordinates: 

Object 1: (x=256, y=270) Object 2: (x=619, y=138)  

Object 3: (x=288, y=138) Object 4: (x=198, y=163)  

Object 5: (x=632, y=188) 

The output shows the model’s efficiency and the 

exact positions of detected objects, indicating 

successful implementation of the object detection 

process. 

 

Fig  3 errors of training phase 

 

Fig  4 errors of validation phase 

Figures 3, and 4 depict box bounding, segmentation 

and classification error during training and validation 

phases respectively. 

Fig. 5, show the Precision-Confidence curve for the 

YOLOv8 model in detecting road potholes. The light 

line represents the model's performance for road 

potholes, and the dark one represents the performance 

for all classes. As the confidence level increases, the 

precision also increases and shows good prediction. 

In Fig. 6, the Recall-Confidence curve is presented. 

The light line represents the model's performance for 

road potholes, and the dark one, for all classes. As the 

confidence level increases, recall generally decreases 

but has acceptable area under the curve. 

           

   

Fig  5 Precision-Confidence Curve  

      

Fig  6 Recall-Confidence Curve  

 

6. Conclusion 

An image recognition and processing system based 

on the YOLOv8 machine learning model is introduces, 

which utilizes a Raspberry Pi-connected camera to 

receive and process images in real-time. Leveraging 

0

1

2

3

4

5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

         train/box bounding error

         train/segmentation error

         train/classification error

0

2

4

6

8

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

           validation/box bounding error
           validation/segmentation error
           validation/classification error



the advanced YOLOv8 model, this system accurately 

and swiftly detects objects and extracts their 

coordinates. These coordinates are then efficiently 

transmitted via SMS or server to the intended 

destinations, enabling remote monitoring. 

Additionally, the system's capability to send images to 

a server facilitates the storage and subsequent analysis 

of data. 

The use of more advanced deep learning and image 

processing techniques is suggested for future studies, 

making this system a powerful tool for addressing 

complex image processing challenges, even in noisy 

environments or bad wather conditions. 
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