
Vision Based Machine Learning Model (YOLO) for Pothole

Detection with Drones

Artin Yahyapour1, Hadiseh Babazadeh2

1B.Sc Student, Faculty of Electrical Engineering, Urmia University of Technology, Urmia, Iran
2Assistant Professor, Faculty of Electrical Engineering, Urmia University of Technology, Urmia, Iran

Abstract

With advancing technology and using of

automatic cars, the need for detecting road

problems increases. Real time image processing

and machine learning based pothole detection of

roads is presented suitable for road monitoring

drones. The camera taken videos are converted to

frames, and YOLO V8 model, with manually

labeled pictures, is used for training. Simulation

results shows that the model can successfully

identify potholes after the successful training of

the system. Coordinates of the detected potholes

are sent via SMS, or to a predefined server

according to the user choice.

Keywords : YOLO, Deep Learning, Image

Processing, Pothole Detection.

1. Introduction

A pothole is a type of road surface defect that forms

when water penetrates into cracks in the pavement,

freezes, and expands. This expansion causes the

pavement to break apart, creating a hole. As vehicles

drive over these weakened areas, the pressure further

breaks down the surface, enlarging the hole and

forming a pothole. Potholes can vary in size and depth

and often create hazards for drivers and pedestrians,

potentially causing damage to tires, wheels,

suspension systems, and other parts of a vehicle and

increasing the risk of accidents caused by swerving to

avoid potholes or losing control when hitting one.

Also, hitting a pothole can be an uncomfortable

experience for passengers.

Repairing potholes typically involves cleaning the

damaged area and filling it with new asphalt or other

suitable materials, but first of all there must be a way

to detect them, especially to be used by automatic

cars[1,2]. Several ways are used for detection, such as

human reports, using accelerometer sensors of cars,

lidar systems, machine learning based algorithms, and

etc. While traditional methods for pothole detection

are costly and time consuming [3], a new method,

YOLO, solves this issue using machine learning to

provide real-time warnings to drivers[4]. This system

has shown promising results, with an accuracy of

94.5% [5]. YOLO, or You Only Look Once, is a real-

time object detection system with a range of

applications [6], from medical object detection, face

recognition,behaviour and object detection, motion

tracking, emotion tracking, handwriting detection [7-

0] to object detection in challenging weather

conditions, particularly for self-driving cars[10].

These studies collectively demonstrate the versatility

and potential of YOLO in various fields.

In this work, vision-based detection of potholes is of

interest supposing a camera equipped drone. The

drone has to take video, analyze the road surface,

detect potholes using machine learning, and report the

position of road damage to a center. To increase the

speed frames with no object are eliminated from

process step. The proposed code can also be used by

drivers, as well as roads controlling and monitoring

centers. To implement the idea YOLO V8 is used.

The training process is done using Roboflow

platform, which is described in the first step in the

following. Then Custom training is brought. Next part

includes code flow chart along with its step by step

description. After that, simulation results of test on

real camera film, is discussed to prove the code.

2. Integration with Roboflow

To start pothole detection, first of all, there must be

a collection of pictures to start training. In this

research, the training images were extracted from a

video. The video was processed to convert it into

multiple frames, and then used for training.

Training is done using Roboflow which is a

comprehensive platform that simplifies the process of

creating, training, and deploying computer vision

models. It provides tools for data annotation, data

augmentation, and dataset management to make it

easier to create high-quality datasets for machine

learning projects [11]. After uploading the images, the

user can use bounding boxes and polygons in the

tagging section to lable them. Roboflow automatically

divides the dataset into training, validation, and testing

sets. Then YOLOv8 model was trained on the labeled

images using Roboflow's platform providing

performance metrics and visualizations.

3. Custome Training

Google Colab is used for custom training of the

YOLOv8 model. In this environment, using training

dataset images, the YOLOv8 model was trained for the

segmentation task.

!yolo task=segment mode=train model=yolov8s-seg.pt

data={dataset.location}/data.yaml epochs=100

imgsz=640

The steps are as follows:

1. First, the yolov8s-seg.pt model file was

downloaded. This file contains the initial

weights for the YOLOv8 segmentation

model.

2. The data file in data.yaml format, which

includes the paths to the training images and

their labels, was loaded.

3. The model was trained using the YOLO

command with parameters specifying the

number of training epochs and the image size

(imgsz).

4. After completing the training, the trained

model was saved as a .pt file, which can be

used for evaluation and prediction.

4. Code Flow chart

The procedure of the code is shown step by step in

Fig.1.

Fig 1 Code flow chart

After image labeling and custom training, it’s time

to analyze the real camera film taken from the road In

block (1) the Raspberry Pi camera is initialized and set

to capture images at a resolution of 1020x500 pixels.

camera = PiCamera()

camera.resolution = (1020, 500)

rawCapture = PiRGBArray(camera, size=(1020, 500))

In the image processing block, (2), the video is read

frame by frame and every 10 frames, a frame is

selected for processing. That frame is then resized to

1020x500 dimensions for faster processing:

 img = cv2.resize(img, (1020, 500))

 h, w, _ = img.shape

Next, a deep learning model, YOLO, is used to

identify, predict, extract bounding boxes and masks,

and categorize in the image. The detected objects are

processed to extract bounding boxes and masks.

 for r in results:

 boxes = r.boxes

 masks = r.masks

In block (3), matching of frames with trained

images is analyzed. the model results are processed to

extract masks and bounding boxes:

 for seg, box in zip(masks.data.cpu().numpy(), boxes):

Collect

photos

Photos

Labeling

R
o

b
o

fl
o

w

Image

Processing

Match the

training

picture

Send via

server / SIM

card

Custom

Trainin

g

Training/Validation/Test

Camera

launching

Google Colab

(1)

(2)

(3) (4)

The masks are resized to match the frame

dimensions and contours of each mask are identified.

 seg = cv2.resize(seg, (w, h))

 contours, _ =

cv2.findContours((seg).astype(np.uint8),

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Contours and class information are drawn on the

image, and the processed frames are saved in a

specified directory. For mask processing, OpenCV

techniques are utilized.

cv2.polylines(img, [contour], True, color=(0, 0, 255),

thickness=2)

cv2.putText(img, c, (x, y - 10),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)

In this research, the optimization of image

processing for object detection is investigated using

the Raspberry Pi camera and the YOLO model. One of

the main goals of this research is to increase the

processing speed by rejecting the frames in which no

objects are detected. This process causes only frames

with objects to be processed, thus improving system

speed making it suitable for real time applications.

Finally, in block (4), the coordinates of the detected

object should be reported. There are two possibilities:

sending via SMS, or sending to the server.

To send via SMS, first the communication settings

are made with the SIM card device. Then, a function

is defined to send an SMS that sends the coordinates

and frame number of the identified objects to the

specified mobile number. Using AT commands, this

function sends SMS containing x and y coordinates

and frame number to the specified mobile number.

First, the SMS mode is activated and then the SMS is

sent.

message = f"Frame {frame_number}: Object detected at x={x},

y={y}"

send_sms(phone_number, count, x, y)

To send the processed images to the server, first the

IP address and server port settings are made.

 S=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

 s.sendto(x_as_byte, (server_ip, server_port))

After image processing and object detection, the

image is converted to JPEG format using the OpenCV

library. The cv2.imencode function converts the image

to an array of bytes. The compressed image is then

converted to binary codes, so that it can be sent over

the network. This is done using the pickle library. At

the final step, the image is sent to the server using the

UDP socket. The most important features are:

1- Compressing the image reduces data size,

convenient for faster transmission,

2- Using UDP protocol, reducing the delay of

data transmission,

3- Flexibility in adjusting the image

compression quality according to application.

The YOLOv8 model is one of the most advanced

and recent object recognition models, significantly

improving recognition accuracy and speed using a

lighter neural network architecture and optimization

techniques like pruning and quantization. This model

excels due to the integration of cutting-edge deep

learning techniques and advanced optimizations,

allowing it to perform exceptionally well under

various conditions, including the presence of noise in

the images.

5. Simulation Results

A video is used as input of the code to see its

performance. The video is chopped into frames and for

example in one of its frame there are some potholes.

Fig. 2 shows the code result for such a frame.

Fig 2. Simulation result for a frame of video with detected potholes

As shown in Fig. 2, five objects (road potholes) were

detected in the image. Detected Objects Coordinates

are as follows:

Processing Speed: Preprocess time: 0.0ms / Inference

time: 100.8ms /Postprocess time: 883.1ms

For frame 10, multiple objects (road potholes) are

detected with the following coordinates:

Object 1: (x=256, y=270) Object 2: (x=619, y=138)

Object 3: (x=288, y=138) Object 4: (x=198, y=163)

Object 5: (x=632, y=188)

The output shows the model’s efficiency and the

exact positions of detected objects, indicating

successful implementation of the object detection

process.

Fig 3 errors of training phase

Fig 4 errors of validation phase

Figures 3, and 4 depict box bounding, segmentation

and classification error during training and validation

phases respectively.

Fig. 5, show the Precision-Confidence curve for the

YOLOv8 model in detecting road potholes. The light

line represents the model's performance for road

potholes, and the dark one represents the performance

for all classes. As the confidence level increases, the

precision also increases and shows good prediction.

In Fig. 6, the Recall-Confidence curve is presented.

The light line represents the model's performance for

road potholes, and the dark one, for all classes. As the

confidence level increases, recall generally decreases

but has acceptable area under the curve.

Fig 5 Precision-Confidence Curve

Fig 6 Recall-Confidence Curve

6. Conclusion

An image recognition and processing system based

on the YOLOv8 machine learning model is introduces,

which utilizes a Raspberry Pi-connected camera to

receive and process images in real-time. Leveraging

0

1

2

3

4

5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

 train/box bounding error

 train/segmentation error

 train/classification error

0

2

4

6

8

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

 validation/box bounding error
 validation/segmentation error
 validation/classification error

the advanced YOLOv8 model, this system accurately

and swiftly detects objects and extracts their

coordinates. These coordinates are then efficiently

transmitted via SMS or server to the intended

destinations, enabling remote monitoring.

Additionally, the system's capability to send images to

a server facilitates the storage and subsequent analysis

of data.

The use of more advanced deep learning and image

processing techniques is suggested for future studies,

making this system a powerful tool for addressing

complex image processing challenges, even in noisy

environments or bad wather conditions.

References

[1] Kavitha, R., and S. Nivetha. "Pothole and object

detection for an autonomous vehicle using yolo." 2021

5th international conference on intelligent computing

and control systems (ICICCS). IEEE, 2021.

[2] Chitale, Pranjal A., et al. "Pothole detection and

dimension estimation system using deep learning (yolo)

and image processing." 2020 35th International

Conference on Image and Vision Computing New

Zealand (IVCNZ). IEEE, 2020.

[3] Riya, P. D., K. R. Nakulraj, and A. A. Anusha. "Pothole

detection methods." 2018 3rd International Conference

on Inventive Computation Technologies (ICICT). IEEE,

2018.

[4] Fong, Simon, Nilanjan Dey, and Amit Joshi. "ICT

Analysis and Applications Proceedings of ICT4SD 2023,

Volume 2." Proceedings of ICT4SD 2 (2023):1.

[5] Lincy, A., et al. "Road Pothole Detection System." ITM

Web of Conferences. Vol. 53. EDP Sciences, 2023.

[6] Park, Sung-Sik, Van-Than Tran, and Dong-Eun Lee.

"Application of various yolo models for computer

vision-based real-time pothole detection." Applied

Sciences 11.23 (2021): 11229.

[7] Ragab, Mohammed Gamal, et al. "A Comprehensive

Systematic Review of YOLO for Medical Object

Detection (2018 to 2023)." IEEE Access (2024).

[8] Hegde, Shambhu, Harish V. Mekali, and Golla

Varaprasad. "Pothole detection and inter vehicular

communication." 2014 IEEE international conference on

vehicular electronics and safety. IEEE, 2014.

[9] Kaushik, Vineet, and Birinderjit Singh Kalyan. "Pothole

Detection System: A Review of Different Methods Used

for Detection." 2022 Second International Conference on

Computer Science, Engineering and Applications

(ICCSEA). IEEE, 2022.

[10] He, Tianyu, and Yi Li. "An improved method for object

detection in raining and foggy conditions for self-driving

cars." Third International Conference on Artificial

Intelligence and Electromechanical Automation (AIEA

2022). Vol. 12329. SPIE, 2022.

[11] Alexandrova, Sonya, Zachary Tatlock, and Maya

Cakmak. "RoboFlow: A flow-based visual programming

language for mobile manipulation tasks." 2015 IEEE

International Conference on Robotics and Automation

(ICRA). IEEE, 2015.

