Vision Based Machine Learning Model (YOLO) for Pothole
Detection with Drones

Artin Yahyapour!, Hadiseh Babazadeh?
'B.Sc Student, Faculty of Electrical Engineering, Urmia University of Technology, Urmia, Iran
2Assistant Professor, Faculty of Electrical Engineering, Urmia University of Technology, Urmia, Iran

Abstract

With advancing technology and using of
automatic cars, the need for detecting road
problems increases. Real time image processing
and machine learning based pothole detection of
roads is presented suitable for road monitoring
drones. The camera taken videos are converted to
frames, and YOLO V8 model, with manually
labeled pictures, is used for training. Simulation
results shows that the model can successfully
identify potholes after the successful training of
the system. Coordinates of the detected potholes
are sent via SMS, or to a predefined server
according to the user choice.

Keywords : YOLO, Deep Learning, Image
Processing, Pothole Detection.

1. Introduction

A pothole is a type of road surface defect that forms
when water penetrates into cracks in the pavement,
freezes, and expands. This expansion causes the
pavement to break apart, creating a hole. As vehicles
drive over these weakened areas, the pressure further
breaks down the surface, enlarging the hole and
forming a pothole. Potholes can vary in size and depth
and often create hazards for drivers and pedestrians,
potentially causing damage to tires, wheels,
suspension systems, and other parts of a vehicle and
increasing the risk of accidents caused by swerving to
avoid potholes or losing control when hitting one.
Also, hitting a pothole can be an uncomfortable
experience for passengers.

Repairing potholes typically involves cleaning the
damaged area and filling it with new asphalt or other
suitable materials, but first of all there must be a way

to detect them, especially to be used by automatic
cars[1,2]. Several ways are used for detection, such as
human reports, using accelerometer sensors of cars,
lidar systems, machine learning based algorithms, and
etc. While traditional methods for pothole detection
are costly and time consuming [3], a new method,
YOLO, solves this issue using machine learning to
provide real-time warnings to drivers[4]. This system
has shown promising results, with an accuracy of
94.5% [5]. YOLO, or You Only Look Once, is a real-
time object detection system with a range of
applications [6], from medical object detection, face
recognition,behaviour and object detection, motion
tracking, emotion tracking, handwriting detection [7-
0] to object detection in challenging weather
conditions, particularly for self-driving cars[10].
These studies collectively demonstrate the versatility
and potential of YOLO in various fields.

In this work, vision-based detection of potholes is of
interest supposing a camera equipped drone. The
drone has to take video, analyze the road surface,
detect potholes using machine learning, and report the
position of road damage to a center. To increase the
speed frames with no object are eliminated from
process step. The proposed code can also be used by
drivers, as well as roads controlling and monitoring
centers. To implement the idea YOLO V8 is used.

The training process is done using Roboflow
platform, which is described in the first step in the
following. Then Custom training is brought. Next part
includes code flow chart along with its step by step
description. After that, simulation results of test on
real camera film, is discussed to prove the code.

2. Integration with Roboflow

To start pothole detection, first of all, there must be
a collection of pictures to start training. In this
research, the training images were extracted from a



video. The video was processed to convert it into
multiple frames, and then used for training.

Training is done using Roboflow which is a
comprehensive platform that simplifies the process of
creating, training, and deploying computer vision
models. It provides tools for data annotation, data
augmentation, and dataset management to make it
easier to create high-quality datasets for machine
learning projects [11]. After uploading the images, the
user can use bounding boxes and polygons in the
tagging section to lable them. Roboflow automatically
divides the dataset into training, validation, and testing
sets. Then YOLOVS model was trained on the labeled
images using Roboflow's platform providing
performance metrics and visualizations.

3. Custome Training

Google Colab is used for custom training of the
YOLOvV8 model. In this environment, using training
dataset images, the YOLOv8 model was trained for the
segmentation task.

!yolo task=segment mode=train model=yolov8s-seg.pt
data={dataset.location}/data.yaml epochs=100

imgsz=640

The steps are as follows:

1. First, the yolov8s-seg.pt model file was
downloaded. This file contains the initial
weights for the YOLOV8 segmentation
model.

2. The data file in data.yaml format, which
includes the paths to the training images and
their labels, was loaded.

3. The model was trained using the YOLO
command with parameters specifying the
number of training epochs and the image size
(imgsz).

4. After completing the training, the trained
model was saved as a .pt file, which can be
used for evaluation and prediction.

4. Code Flow chart

The procedure of the code is shown step by step in
Fig.1.

Collect
S photos
gg lab
) Google Cola
IR . Gooele Cole 0
Photos Custom - Camera
Labeling md Trainin launching
! LI
Training/Validation/Test Image
Processing
4) 1 3)
Send via Match the
server / SIM - tra}ining
card picture

Fig 1 Code flow chart

After image labeling and custom training, it’s time
to analyze the real camera film taken from the road In
block (1) the Raspberry Pi camera is initialized and set
to capture images at a resolution of 1020x500 pixels.

camera = PiCamera()

camera.resolution = (1020, 500)

rawCapture = PiRGBArray(camera, size=(1020, 500))

In the image processing block, (2), the video is read
frame by frame and every 10 frames, a frame is
selected for processing. That frame is then resized to
1020x500 dimensions for faster processing:

img = cv2.resize(img, (1020, 500))

h, w, _ = img.shape

Next, a deep learning model, YOLO, is used to
identify, predict, extract bounding boxes and masks,
and categorize in the image. The detected objects are
processed to extract bounding boxes and masks.

for r in results:
boxes = r.boxes

masks = r.masks

In block (3), matching of frames with trained
images is analyzed. the model results are processed to
extract masks and bounding boxes:

for seg, box in zip(masks.data.cpu().numpy(), boxes):



The masks are resized to match the frame
dimensions and contours of each mask are identified.

seg = cv2.resize(seg, (w, h))

contours, _ =

cv2.findContours((seg).astype(np.uint8),

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX SIMPLE)

Contours and class information are drawn on the
image, and the processed frames are saved in a
specified directory. For mask processing, OpenCV
techniques are utilized.

cv2.polylines(img, [contour], , color=(@, @, 255),

thickness=2)

cv2.putText(img, c, (x, y - 10),

cv2.FONT HERSHEY SIMPLEX, ©.5, (255, 255, 255), 2)

In this research, the optimization of image
processing for object detection is investigated using
the Raspberry Pi camera and the YOLO model. One of
the main goals of this research is to increase the
processing speed by rejecting the frames in which no
objects are detected. This process causes only frames
with objects to be processed, thus improving system
speed making it suitable for real time applications.

Finally, in block (4), the coordinates of the detected
object should be reported. There are two possibilities:
sending via SMS, or sending to the server.

To send via SMS, first the communication settings
are made with the SIM card device. Then, a function
is defined to send an SMS that sends the coordinates
and frame number of the identified objects to the
specified mobile number. Using AT commands, this
function sends SMS containing x and y coordinates
and frame number to the specified mobile number.
First, the SMS mode is activated and then the SMS is
sent.

message = f"Frame {frame_number}: Object detected at x={x},

y={y}"

send_sms (phone_number, count, x, y)

To send the processed images to the server, first the
IP address and server port settings are made.

S=socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.sendto(x_as_byte, (server ip, server_port))

After image processing and object detection, the
image is converted to JPEG format using the OpenCV

library. The cv2.imencode function converts the image
to an array of bytes. The compressed image is then
converted to binary codes, so that it can be sent over
the network. This is done using the pickle library. At
the final step, the image is sent to the server using the
UDP socket. The most important features are:

I- Compressing the image reduces data size,
convenient for faster transmission,

2- Using UDP protocol, reducing the delay of
data transmission,

3- Flexibility in adjusting the image
compression quality according to application.

The YOLOvV8 model is one of the most advanced
and recent object recognition models, significantly
improving recognition accuracy and speed using a
lighter neural network architecture and optimization
techniques like pruning and quantization. This model
excels due to the integration of cutting-edge deep
learning techniques and advanced optimizations,
allowing it to perform exceptionally well under
various conditions, including the presence of noise in
the images.

5. Simulation Results

A video is used as input of the code to see its
performance. The video is chopped into frames and for
example in one of its frame there are some potholes.
Fig. 2 shows the code result for such a frame.

Fig 2. Simulation result for a frame of video with detected potholes

As shown in Fig. 2, five objects (road potholes) were
detected in the image. Detected Objects Coordinates
are as follows:

Processing Speed: Preprocess time: 0.0ms / Inference
time: 100.8ms /Postprocess time: 883.1ms



For frame 10, multiple objects (road potholes) are
detected with the following coordinates:

Object 1: (x=256, y=270) Object 2: (x=619, y=138)
Object 3: (x=288, y=138) Object 4: (x=198, y=163)
Object 5: (x=632, y=188)

The output shows the model’s efficiency and the
exact positions of detected objects, indicating
successful implementation of the object detection
process.

5
4\
3
2 S ~
N am q, -
1 Coeaa o N v amam oo
-~---------
0
00N AN O OMOMNS 001 N O
AN NN <N N O NMNOOOO
— train/box bounding error
- e train/segmentation error
- - train/classification error

Fig 3 errors of training phase

2 S0, SIS 3TV . T O TTTTL
0
I 00 N N O OWMN O 1 00 1N N O
SN ANN < NN O NNOOO OO
-— . validation/box bounding error
— validation/segmentation error
ccccoe validation/classification error

Fig 4 errors of validation phase

Figures 3, and 4 depict box bounding, segmentation
and classification error during training and validation
phases respectively.

Fig. 5, show the Precision-Confidence curve for the
YOLOVS model in detecting road potholes. The light
line represents the model's performance for road
potholes, and the dark one represents the performance

for all classes. As the confidence level increases, the
precision also increases and shows good prediction.

In Fig. 6, the Recall-Confidence curve is presented.
The light line represents the model's performance for
road potholes, and the dark one, for all classes. As the
confidence level increases, recall generally decreases
but has acceptable area under the curve.

10 Precision-Confidence Curve

0.8

=]
@

Precision

o
»

0.2

0.0 T T T T
0.0 a2 0.4 0.6 0.8 1.0

Confidence

— road-pothole-gQtU
— all classes 1.00 at 0.884

Fig 5 Precision-Confidence Curve

10 Recall-Confidence Curve

0.8

0.6

Recall

0.4

0.0 T T T T
0.0 0.2 04 0.6 0.8 1.0
~nnfidence

—— road-pothole-gQtu
= all classes 0.82 at 0.000

Fig 6 Recall-Confidence Curve

6. Conclusion

An image recognition and processing system based
on the YOLOv8 machine learning model is introduces,
which utilizes a Raspberry Pi-connected camera to
receive and process images in real-time. Leveraging



the advanced YOLOVS model, this system accurately
and swiftly detects objects and extracts their
coordinates. These coordinates are then efficiently
transmitted via SMS or server to the intended
destinations, enabling remote monitoring.
Additionally, the system's capability to send images to
a server facilitates the storage and subsequent analysis
of data.

The use of more advanced deep learning and image
processing techniques is suggested for future studies,
making this system a powerful tool for addressing
complex image processing challenges, even in noisy
environments or bad wather conditions.

References

[1] Kavitha, R., and S. Nivetha. "Pothole and object
detection for an autonomous vehicle using yolo." 2027
Sth international conference on intelligent computing
and control systems (ICICCS). IEEE, 2021.

[2] Chitale, Pranjal A., et al. "Pothole detection and
dimension estimation system using deep learning (yolo)
and image processing." 2020 35th International
Conference on Image and Vision Computing New
Zealand (IVCNZ). IEEE, 2020.

[3] Riya, P. D., K. R. Nakulraj, and A. A. Anusha. "Pothole
detection methods." 2018 3rd International Conference
on Inventive Computation Technologies (ICICT). IEEE,
2018.

[4] Fong, Simon, Nilanjan Dey, and Amit Joshi. "ICT
Analysis and Applications Proceedings of ICT4SD 2023,
Volume 2." Proceedings of ICT4SD 2 (2023):1.

[5] Lincy, A., et al. "Road Pothole Detection System." ITM
Web of Conferences. Vol. 53. EDP Sciences, 2023.

[6] Park, Sung-Sik, Van-Than Tran, and Dong-Eun Lee.
"Application of various yolo models for computer
vision-based real-time pothole detection." Applied
Sciences 11.23 (2021): 11229.

[7] Ragab, Mohammed Gamal, et al. "A Comprehensive
Systematic Review of YOLO for Medical Object
Detection (2018 to 2023)." IEEE Access (2024).

[8] Hegde, Shambhu, Harish V. Mekali, and Golla
Varaprasad. "Pothole detection and inter vehicular
communication." 2014 IEEE international conference on
vehicular electronics and safety. IEEE, 2014.

[9] Kaushik, Vineet, and Birinderjit Singh Kalyan. "Pothole
Detection System: A Review of Different Methods Used
for Detection." 2022 Second International Conference on

Computer Science, Engineering and Applications
(ICCSEA). IEEE, 2022.

[10] He, Tianyu, and Yi Li. "An improved method for object
detection in raining and foggy conditions for self-driving
cars." Third International Conference on Artificial
Intelligence and Electromechanical Automation (AIEA
2022). Vol. 12329. SPIE, 2022.

[11] Alexandrova, Sonya, Zachary Tatlock, and Maya
Cakmak. "RoboFlow: A flow-based visual programming
language for mobile manipulation tasks." 2015 IEEE
International Conference on Robotics and Automation
(ICRA). IEEE, 2015.



