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Abstract 

In former times, optimization at distribution and 

transmission levels was performed in a decentralized 

manner through a central controller’s surveillance. 

However, given the movement toward microgrid 

systems and problems of centralized optimization 

methods, today’s systems have approached decentralized 

structures. On the other hand, privacy protection and 

information exchange in a safe platform are some of the 

main concerns and challenges today. Considering the 

significant development of technology and the 

smartization of today’s power systems, problems, 

including optimization and resource management, have 

been considered significantly important within short 

horizons. This paper examines the decentralized optimal 

power flow problem within significantly short horizons, 

a few tens of seconds. The two proposed algorithms are 

analyzed and compared for problem-solving in terms of 

solution time and efficiency. Ultimately, the 

decentralized optimal load flow problem is solved for the 

PJM network given the rapid load changes and using the 

Adaptive Alternating Direction Method of Multipliers 

(A.ADMM) algorithm. 
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Introduction 

Optimal power flow problem is one of the significant 

tools for operation and planning topics in power systems 

studies. Real-time analytics of optimal power flow 

problems is highly important in large-scale power 

systems.[1] Hence, the optimal power flow problem is 

performed by the system operator for operational 

expense reduction, loss reduction, and voltage profile 

improvement.[2] The decentralized optimization method 

is used to reduce computational burden in large-scale 

problems.[3] Traditional power systems are controlled in 

a centralized manner using a top-down approach that 

does not conform to the decentralized optimization 

method. Therefore, moving away from traditional 

exploitation to benefit from the advantages of 

decentralized exploitation is needed.[4] Given the 

increased distributed energy resources in power systems, 

decentralized control constantly faces new and extensive 

agents that complicates the computation of centralized 

method in large-scale problems. On the other hand, 

participants in electricity markets are reluctant to share 

their information to protect their privacy, but possessing 

all agents’ information is needed in decentralized 

control.[5] Using a decentralized optimization method 

will not cause any problems and challenges mentioned 

earlier. Decentralized optimization was previously 

utilized in multi-agent systems such as transport, radio 

networks, state estimation, and smart grids.[6] In [7], the 

authors examined 6 decentralized optimization methods 

for power flow problems. In [8] The use of the 

Alternating Direction Method of Multipliers (ADMM) 

technique to solve the economic dispatch problem has 

been examined. Article [9] investigates the use of the 

ADMM method for energy management of multiple 

linked microgrids in transactive energy (TE) framework 

and investigates energy management in a decentralized 

manner in emergency and unwanted circumstances. 

Article [10] analyses and examines the optimal power 

flow problem using decentralized optimization methods, 

and 3 algorithms have been proposed in this article to 

solve this problem in a decentralized manner.  

   Given the importance of optimal power flow problems 

within short periods and the advantages of decentralized 

optimization methods, this article proposes the 

decentralized optimization approach with 2 methods for 

solving optimal power flow problems. Additionally, 

compared to previous studies, this article evaluates the 

solution time of decentralized optimal power flow 

problems within significantly short periods. Therefore, 

the possibility of optimal real-time exploitation is 

provided for large-scale systems using a decentralized 

method. 

 

Optimal Power Flow 

The optimal power flow problem is the main base and 

foundation of planning and exploitation in power 

systems. [11] DC Optimal Power Flow (DCOPF) seeks 

to find the optimal distribution of generated resources 

that will fulfill the network’s technical conditions. For 

60 years, the optimal power flow problem has been 

studied extensively and is one of the important 

challenges of the electric power industry. DCOPF 

problem is proposed as a linear optimization or quadratic 

programming. [12] In this article, it is assumed that all 

generation units are exploited in an online manner, and 
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their binary variables have been surrendered. The 

mathematical model of the DCOPF problem is given 

below: 
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Equation (1) optimizes with the goal of minimizing 

generation cost from the whole network’s viewpoint. In 

the said equation, 
ipg  is generation power of unit i and 

ia  and 
ib  are second-order and first-order cost 

coefficients. Equation (2) points out kcl in each bus. 

i and j are the voltage angle of bus i and the voltage 

angle of bus j, respectively. ijX is the line reactance 

between bus i and j, and iL  is the available load in the 

bus i. Constraint (3) shows the limitation of how much 

power can move through the lines. Constraint (4) points 

out the generation capacity of each generation unit. 

Constraint (5) and Constraint (6) present slack bus 

voltage and angle range of other system buses.  

 

 A Review of ADMM 

ADMM algorithm is a combination of the dual 

decomposition algorithm and augmented 

Lagrangian.[13] Take the following optimization 

problem into account : 

min  f (x) f (z)

       subject to:

            Ax+Bz=c

+

                   (7) 

The above objective function is divided into two separate 

functions of x and z but connects these two variables’ 

equation constraint. λ is the Lagrangian coefficient that 

is proportional to the equation constraint of Ax Bz c+ = . 

Therefore, Lagrangian equals to: 

TL(x,y,z) f (x) g(z) (Ax Bz c)= + + + −    (8) 

   By adding one second-order term to a simple 

Lagrangian, the augmented Lagrangian can significantly 

improve the rate of convergence. Augmented Lagrangian 

is written bellow: 
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ρ is a constant positive coefficient which is called 

penalty parameter. As said earlier, ADMM is a 

combination of the dual decomposition algorithm and 

augmented Lagrangian. ADMM algorithm uses a 

repetitive process similar to dual decomposition 

algorithm to update variables of augmented Lagrangian 

problem. In each iteration k, ADMM consists of the 

below steps 

k kk 1
parg min (x,z , )x L

+ =   (10) 

k 1 kk 1
parg min( (x ,z, ))z L

++ =   (11) 

k 1 k 1k 1 k (Ax Bz c)+ ++ = + + −   (12) 

In the first step, variable vectors of kz  and k , which 

were achieved in the previous iteration of k, are 

considered constant, based on which augmented 

Lagrangian is solved for the variable vector of x. Hence, 

updated k 1x +  is achieved. Next, the same process is 

applied to the variable vector of z. Ultimately in the third 

step, Lagrangian coefficients corresponding to 

constraint Ax Bz c+ = , which connects variables of x 

and z together, are updated given the extent of 

convergence from this constraint and penalty parameter.  

   The termination criterion of the ADMM algorithm is 

calculated by defining two parameters, including primal 

residual and dual residual. 

k Ax Bz cr = + −                (13) 

T k k 1k A B (z z )s
−=  −        (14) 

When these parameters are less than a predetermined 

value, the ADMM algorithm will be terminated. Figure 1 

presents the graphical illustration of this optimization 

method. 

 

Fig 1. Graphical illustration of  

decentralized optimization method 
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Decentralized Optimal Power Flow  

Problem modeling of optimal power flow of DCOPF is 

given below using ADMM algorithm. 
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Given previously-said facts, the initial DCOPF problem, 

which was controlled in a central form, is decomposed 

into local subproblems that variables θ and Z are named 

local variable and global variable, respectively. 

   As an example, Figure 2 shows the modeling and 

information exchange in a two-bus system. 

 

 
Fig2. Information exchange in a two-bus system 

 

In Figure (2), it is obvious that two regions are 

connected using one line. To virtually separate these two 

regions, region 1 and region 2 in DCOPF problem only 

need to share information related to the angle of 

marginal buses with each other, and there is no need to 

share private information, e.g., power generation 

limitation, power generation cost function, amount of 

load, and etc. Upon modeling the problem as above and 

using the ADMM optimization technique, the centralized 

optimal power flow problem can be converted into a 

decentralized optimal power flow problem. 

   Calculating the proper value of ρ is highly effective in 

the convergence rate of the ADMM algorithm, and this 

coefficient depends on the proposed optimization model. 

This article compares 2 methods in 2 circumstances: 

constant and variable ρ. If ρ is considered a variable, an 

initial value is first given ρ,  and then the value of ρ is 

updated in each iteration using Equation (21). Next, it is 

shown that the method with variable ρ converges to the 

final solution in lesser iterations and a shorter time than 

the circumstance in which ρ is considered constant.  
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In this article, values of ξ and ϒ are assumed to be 2 and 

10. 

 

Network Under Investigation 

Figure (3) shows a schematic diagram of the PJM 

network with 5 buses and 6 lines. In this network, it has 

been assumed that 3MW load, 3 MW load, and 4MW 

load have been placed in bus B, bus C, and bus D, 

respectively. In this article, the PJM network is divided 

into 3 subsystems, similar to Figure 3. Data related to 

generation lines and units have been used from the 

article [14]. 

 

Table 1 compares the results achieved using centralized 

and decentralized optimization methods. The results 

depict that generators’ generation power in decentralized 

and centralized methods is close to each other with 

highly significant precision. 

 

 

 

Fig 3. PJM network 
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Table1. Comparing generators’ generation power in      

centralized and decentralized circumstances 

 

Table 2 compares the 2 proposed algorithms in terms of 

iteration and solution time. The results depict that the 

Adaptive Alternating Direction Method of Multipliers 

(A.ADMM) algorithm, in which ρ is considered a 

variable, converges to the final solution in lesser 

iterations and a shorter time than the classic ADMM 

algorithm with a constant ρ. This advantage makes the 

method highly applicable in studies where solution time 

is an important and determinant matter. 

       Table 2. Comparing ADMM and A.ADMM methods 

 

Next, this article investigated how the generation power 

of units and voltage angle of marginal buses converge. 

 

 

Fig 4. Generators’ generation power in 

A.ADMM method 

 

Fig5. Generators’ generation power in  

 ADMM method 

 

Generator 

Centralized 

generated 
power 

 (MW) 

ADMM 

generated 
power  

(MW) 

A.ADMM 

generated 
power  

(MW) 

1pg  0.4 0.4 0.4 

2pg  1.7 1.7 1.7 

3pg  1.9 1.8998 1.8997 

4pg  0 0 0 

5pg  6 6 6 

ρ Number of 

 iterations 

ADMM 

Solution 

 time (s) 

ADMM 

Number of  

iterations 

A.ADMM 

Solution 

 time (s) 

A.ADMM 

40 14365 281.1492  1170 17.877  

60 9420 179.604  924 16.03 

80 6686 131.186  990 17.32 

10 5157 95.509  896 15.588 

12 6283 110.165 958 17.03 

Fig 6. Angle of marginal bus B in  

A.ADMM method 

 

Fig7. Angle of marginal bus B in 

 ADMM method 

 

Fig 8. Angle of marginal bus E in 

 A.ADMM method 
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Figure 14 shows load changes every 30 seconds for a 

specific hour, and due to A.ADMM method’s efficiency 

in problem-solving within significant short horizons, the 

said technique is utilized to solve DCOPF problem in a 

time frame of 30 seconds. In this condition, each 

generator’s generation power is depicted in Figure 15. 

Conclusion 

This article investigates optimal power flow in a 

decentralized form. Moreover, the two decentralized 

optimization techniques are analyzed and compared for 

problem-solving in terms of solution time. As said in 

previous sections, the solution time of optimization 

problems is significantly important in exploitation and 

energy management studies due to today's advancement 

of technology. It was shown that exploitation of power 

Fig 9. Angle of marginal bus E in 

 ADMM method 

 

Fig 10. Angle of marginal bus C in 

 A.ADMM method 

 

Fig 11. Angle of marginal bus C in 

 ADMM method 

 

Fig 12. Angle of marginal bus D in 

 A.ADMM method 

 

Fig 13. Angle of marginal bus D in 

ADMM method 

 

Fig 14. Rapid changes in available load 

 

Fig 15. Distribution of generated power 

when load is rapidly changing 
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systems within significantly short periods and making 

decisions in a faster form using A.ADMM is possible 

compared to the classic ADMM technique. Moreover, 

compared to previous studies, the decentralized optimal 

power flow problem has been analyzed within a time 

frame of 30 seconds in this study, the results of which 

are reported. To continue in the same direction, we 

suggest decentralized energy management in microgrids 

and energy exchange in significantly short times in 

farmwork of transactive energy using the proposed 

techniques. 
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