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Abstract. In this paper we introduce modular frame, woven modular frame in Hilbert

C∗-modules. And we show that they share many properties with Riesz basis in Hilbert. Also,

we study some properties of these operators. We have discussed the relations and properties

between woven Riesz bases and Riesz bases in C∗. Finally, we have discussed the properties of

woven g-frames for tensor product of Hilbert space.
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1. Introduction

Hilbert space frames were originally introduced by Duffin and Schaeffer to deal with some prob-
lems in non-harmonic Fourier analysis[5]. Frames can be viewed as redundant bases which are
generalizations of Riesz bases [1–4]. This redundancy property sometimes is extremely important
in applications such as signal and image processing, data compression and sampling theory. In
recent years, many mathematicians got significant results by extending the theory of frames from
Hilbert spaces to Hilbert C∗-Modules. Hilbert C∗-Modules are generalizations of Hilbert spaces
by allowing the inner product to take values in a C∗-algebra rather than in the field of real or
complex numbers. They were introduced and investigated initially by Kaplansky [1, 2]. Frank and
Larson [6] introduced the concept of frames in finitely or countably generated Hilbert C∗-modules
over a unital C∗-algebra. In [1, 2], A. Khosravi and B. Khosravi introduced g-frames in Hilbert
C∗-modules and observed that they share many useful properties with their corresponding notions
in Hilbert spaces. Frames for Hilbert spaces have natural analogues for Hilbert C∗-modules. These
frames are called Hilbert C∗-modular frames or just simply modular frames. Modular frames are
not trivial generalizations of Hilbert space frames due to the complex structure of C∗-algebras.
It is well known that the theory of Hilbert C∗-modules is quite different from that of Hilbert
spaces. For example, we know that, any closed linear subspace in a Hilbert space has an or-
thogonal complement. But this is no longer true in Hilbert C∗-module setting since not every
closed submodule of a Hilbert C∗-module is complemented. Moreover, the Riesz representation
theorem for continuous functionals on Hilbert spaces does not hold in Hilbert C∗-modules, and so
there exist nonadjointable bounded linear operators on Hilbert C∗-modules [1, 2]. Therefore it is
expected that problems about frames in HilbertC∗-modules are more complicated than those in
Hilbert spaces. While some of the results about frames in Hilbert spaces can be easily extended to
Hilbert C∗-modular frames, many others cannot be obtained by simply modifying the approaches
used in Hilbert spaces case.

2. Woven Modular g-frame

In this section, first we recall some definitions and basic properties of Hilbert C∗- Modules and
p-woven frame and g-frame in Hilbert C∗- Modules. Throughout this note A is a unital C∗-algebra
and H,Ki are finitely or countably generated Hilbert A-modules. For each i ∈ I, L(H,Ki) will
denote the set of all adjointable A-linear maps from H to Ki. We also define

`2(A) := {a = (ai) ∈ A :
∑

i∈I a
∗

i ai is norm convergent in A}

∗speaker
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2.1. Definition. A pre-Hilbert A-module is a left A-module H equipped with an A-valued inner
product 〈., .〉 : H ×H −→ A, such that
(i) 〈x, x〉 ≥ 0 for all x ∈ H and 〈x, x〉 = 0 if and only if x = 0,
(ii)〈x, y〉 = 〈y, x〉∗ for all x, y ∈ H,
(iii) 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉 for all a ∈ A and x, y, z ∈ H.

We assume that the linear operations of A and H are compatible.i.e. λ(ax) = (λa)x for every
λ ∈ C, a ∈ A and x ∈ H. For every x ∈ H, we define

‖ x ‖=‖ 〈x, x〉 ‖
1

2 and |x| = 〈x, x〉
1

2 .

If the pre-Hilbert A-module (H, 〈., .〉) is complete with respect to ‖ . ‖, it is called a Hilbert A-
module or a Hilbert C∗-modules over A. In this paper we focus on finitely and countably generated
Hilbert C∗-modules over unital C∗-algebra A. A Hilbert A-module H is (algebraically) finitely
generated if there exists a finite subset {x1, x2, ..., xm} of H such that every element x ∈ H can be
expressed as an A-linear combination x =

∑m

i=1 aixi, ai ∈ A. A Hilbert A-module H is countably
generated if there exists a countable set of generators.
We now recall the definitions of frames and Riesz bases in Hilbert C∗-modules as follows.

2.2. Definition. Let H be a Hilbert A-module. A family {xi : i ∈ I} of elements of H is a
(standard) frame for H, if there exits constants 0 < C ≤ D < ∞, such that for all x ∈ H,

C〈x, x〉 ≤
∑

i∈I〈x, xi〉〈xi, x〉 ≤ D〈x, x〉. (1)

Where the sum in the middle of the inequality convergent in norm for x ∈ H.

The numbers C and D are called frame bounds, If C = D = λ, it is called a λ-tight frame and
when C = D = 1, it is called a Parseval frame. {xi : i ∈ I} is said to be a Bessel sequence if
only the right-hand side inequality is required.If the sum of (1) is convergent in norm, the frame
is called standard.

According to what Arambasic and Khosravi proved, the above definition is equivalent to,

C ‖ x ‖2≤‖
∑

i∈I〈x, xi〉〈xi, x〉 ‖≤ D ‖ x ‖2,

A sequence {xi : i ∈ I} is said to be a Riesz basis of H if it is a frame and a generating set with
the additional property that A-linear combinations

∑
i∈S aixi with coefficients {ai : i ∈ S} ⊆ A

and S ⊆ I are equal to zero if and only if in particular every summand aixi equal zero for
i ∈ S. Note that we can also define the analysis operator, synthesis operator and frame operator
for modular frame as follows. Suppose that {xi : i ∈ I} is a frame of a finitely or countably
generated Hilbert A-module H over a unital C∗-algebra A. The operator T : H → `2(A) defined by
Tx = {〈x, xi〉}i∈I , is called the analysis operator. The adjoint operator T ∗ : `2(A) → H is given by
T ∗{ai}i∈I =

∑
i∈I aixi. T

∗ is called pre-frame operator or the synthesis operator. By composing
T and T ∗, we obtain the frame operator S : H → H,

Sx = T ∗Tx =
∑

i∈I〈x, xi〉xi, (1)

is a frame operator for H. That is S ∈ End∗A(H), positive and invertible. Where End∗A(H) is the
set of adjointable A-linear maps on H.
The frame {S−1xi : i ∈ I} is said to be the canonical dual frame of {xi : i ∈ I}.

2.3. Definition. Let H be a Hilbert A-module. We say that {xj
i : i ∈ I} for j = 1, 2, ...,m is

a p-woven frame, if sequence {xj
i : i ∈ I} for j = 1, 2, ...,m be Bessel and there exists a partition

p = {σ1, σ2, ..., σm} of I such that
⋃m

j=1{x
j
i : i ∈ σj} is a frame.

2.4.Definition. LetH be a Hilbert C∗-module over a unital C∗-algebra A. Suppose {xj
i : i ∈ I}

for j = 1, 2, ...,m is a Bessel sequence in H. we say that {xj
i : i ∈ I} for j = 1, 2, ...,m is a p-

woven modular Riesz basis for H if there exists a partition to p = {σ1, σ2, ..., σm} of I such that⋃m

j=1{x
j
i : i ∈ σj} is a modular Riesz basis for H.

Since {xj
i : i ∈ σj} for j = 1, 2, ...,m is a Bessel sequence, we can define the synthesis operator Tj ,

the analysis operator T ∗

j and the frame operator Sj , if {x
j
i : j = 1, 2, ...,m, i ∈ σj} is a p-woven Riesz
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and a partition p = {σ1, σ2, ..., σm} of I, then Sp(x) =
∑m

j=1 S
j
σj
(x) where Sj

σj
(x) =

∑
i∈σj

〈x, xj
i 〉x

j
i

for every j, Sj
σj

is a bounded, self adjoint and positive operator.

2.5. Theorem. Let H be a finitely or countably Hilbert A-module. Then

{xj
i : i ∈ I, j = 1, 2, ...,m} is a p-woven modular Riesz basis in H if and only if the following hold:

(i)
⋃m

j=1{x
j
i : i ∈ σj} is a Riesz basis.

(ii){xj
i : i ∈ I} for j = 1, 2, ...,m has a unique dual frame {yji : i ∈ I} for j = 1, 2, ...,m which is a

p-woven modular Riesz basis.

Proof. (i) Let {xj
i : i ∈ I, j = 1, 2, ...,m} be a modular Riesz basis in H corresponding to

partition p = {σ1, σ2, ..., σm} of I. Then
⋃m

j=1{x
j
i : i ∈ σj} is a frame for H and if

∑
i∈σj

a
j
ix

j
i = 0,

then a
j
ix

j
i = 0 for each i ∈ σj , j = 1, 2, ...,m. Hence (i) is proved.

(ii) Since U j ∈ L(`2(A), H) is invertible and x
j
i = U j(eji ) for each i ∈ I, then for every x ∈ H ,

(U j)−1(x) ∈ `2(A), defined U = ⊕m
j=1U

j we have

U−1(x) =
∑m

j=1

∑
i∈σj

〈(U j)−1(x), eji 〉e
j
i =

∑m

j=1

∑
i∈σj

〈x, ((U j)−1)∗eji 〉e
j
i .

Therefore x = U(U−1x) =
∑m

j=1

∑
i∈σj

〈x, ((U j)−1)∗eji 〉e
j
i .

Now (U−1)∗ = ⊕m
j=1((U

j)−1)∗ : `2(A) → H is adjointable and invertable. It follows that {yji =

((U j)−1)∗eji : i ∈ I} is a modular Riesz basis for H and for every

x ∈ H,x =
∑m

j=1

∑
i∈σj

〈x, yji 〉x
j
i .

Therefore {yji : i ∈ I} for j = 1, 2, ...,m, is a dual p-woven of {xj
i : i ∈ I} for j = 1, 2, ...,m and by

(i) it is unique. �

2.6. Remark. Let H and K be Hilbert spaces. Then the tensor product of H and K is the set
H ⊗K of all antilinear maps T : K → H such that

∑
i ‖ Tui ‖

2< ∞ for some , and hence every
orthonormal basis {ui : i ∈ I} of K .Moreover for every T ∈ H ⊗K we set

‖| T ‖|2=
∑

i

‖ Tui ‖
2

By Theorem 7 − 12 in [7] . H ⊗K is a Hilbert space with the norm ‖| . ‖| and associated inner
product < T,Λ >=

∑
i < Tui,Λui > where {ui : i ∈ I} is an arbitrary orthonormal basis of K .

Let x ∈ H and y ∈ K .Then we define the map x⊗ y by

(x⊗ y)(z) =< y, z > x (z ∈ K)

Obviously x⊗ y belongs to H ⊗K , Let T ∈ H ⊗K. x, x
′

∈ H and y, y
′

∈ K , then by Theorem
7.12 in [7]

‖| T ‖|=‖| T ∗ ‖| , ‖| x⊗ y ‖|=‖ x ‖‖ y ‖ , < x⊗ y, x
′

⊗ y
′

>=< x, x
′

>< y, y
′

>

If {ei : i ∈ I} and {ui : j ∈} are orthonormal bases for H and K respectively, then {ei ⊗ uj : i ∈
I, j ∈ J} is an orthonormal basis for H ⊗K. By Theorem 7.12 in [7].

2.7. Theorem. Let {f j
i : i ∈ I} for j = 1, 2, ...,m be a p-woven frame for H and {gkl : l ∈ J} for

k = 1, 2, ..., n be a p-woven frame for K . Then {f j
i ⊗ gkl : (i, j) ∈ I × J} for j = 1, 2, ...,m and

k = 1, 2, ..., n is a p-woven frame for H ⊗K

Proof. Let
⋃m

j=1{f
j
i : i ∈ σj} is a frame for H corresponding to P = {σ1, σ2, ..., σm} and

⋃n

k=1{g
k
l : l ∈ δk} is a frame for K corresponding to P

′

= {δ1, δ2, ..., δn}. Then by Theorem 2-2

in [7],
⋃m

j=1

⋃n

k=1{f
j
i ⊗ gkl : i ∈ σj , l ∈ δj} is a frame for H ⊗ K corresponding to the partition

P
′′

{∆j,k = σj × δk : j = 1, 2, ...,m, k = 1, 2, ..., n} of I × J . �

2.8. Definition. A sequence {Λi ∈ L(H,Ki) : i ∈ I} is a g-frame in Hilbert A−module H with
respect to {Ki : i ∈ I}, if there exist real constants C,D such that for every x ∈ H
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C〈x, x〉 ≤
∑

i∈I〈Λix,Λix〉 ≤ D〈x, x〉. (2)

We call C and D the g-frame bounds. If only the right-hand sid is required, it is called a g-Bessel
sequence. Moreover if C = D = λ tight and if C = D = 1, it is called g-Parseval. The g-frame is
standard if for each x ∈ H, the sum in (2) converges in norm.

2.9. Theorem. Let {Λj
i ∈ L(Hj ,K

j
i ) : i ∈ I} for j = 1, 2, ...,m be a g-frame with bounds Ai, Bi.

Then {Λ1
i ⊗Λ2

i ⊗ ...⊗Λm
i : i ∈ I} is a g-frame for H1⊗ ...⊗Hm w.r.t {K1

i ⊗K2
i ⊗ ...⊗Km

i : i ∈ I}

Proof. By the associativily of tensor product [6, P rop.2.6.5] it is enough to prove the theorem
for n = 2. Let {Λi ∈ L(H1,Ki) : i ∈ I} and {Γj ∈ L(H2,Mj) : j ∈ J} be two g-frames with
bounds A1, B1 and A2, B2 respectively. For each f ⊗ g ∈ H1 ⊗H2∑

(i,j)∈I×J

〈(Λi ⊗ Γj)(f ⊗ g), (Λi ⊗ Γj)(f ⊗ g)〉

∑

(i,j)∈I×J

〈Λi(f)⊗ Γj(g),Λi(f)⊗ Γj(g)〉 ≤ B1B2〈f, f〉〈g, g〉

= B1B2〈f ⊗ g, f ⊗ g〉.

Similarly, for lower bound
∑

(i,j)∈I×J

〈(Λi ⊗ Γj)(f ⊗ g), (Λi ⊗ Γj)(f ⊗ g)〉 ≥ A1A2〈f ⊗ g, f ⊗ g〉.

Therefore we have the result. �
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