

Shahid Chamran 11-12 Auguest 2021, Shahid Chamran University of Ahvaz, Ahvaz, Iran

## On Automorphic Classes of finite groups

## S. Hosseini $^{\ast}$

Department of Mathematics, Birjand Baranch, Islamic Azad University, Birjand, Iran.

**Abstract**. Let G be a finite group and  $x \in G$ .  $Cl_A(x) = \{\alpha(x) | \alpha \in Aut(G)\}$  denotes the automorphic class of x in G. In this paper some properties of finite groups are described via automorphic class and it is shown that if the number of automorphic classes of a given lower autonilpotent group G, is even then |Aut(G)| is also even.

Keywords: equivalence relation, absolute center, automorphism group.. AMS Mathematical Subject Classification [2010]: 20D45, 20D20,37A20.

#### 1. Introduction

Let G be a finite group and A be its automorphism group. Additionally, let  $L(G) = \{g \in G | \alpha(g) = g, \forall \alpha \in Aut(G)\}$  and  $K(G) = \langle [g, \alpha] = g^{-1}g^{\alpha} | g \in G, \alpha \in Aut(G) \rangle$  be the absolute center and autocommutator subgroup of G respectively. The concepts of absolute center and autocommutator has been introduced by Hegarty in [2]. The autcommutator of higher weight is defined inductively as follows:

 $[g, \alpha_1, \alpha_2, ..., \alpha_i] = [[g, \alpha_1, \alpha_2, ..., \alpha_{i-1}], \alpha_i], \text{ for all } \alpha_1, \alpha_2, ..., \alpha_i \in Aut(G), i \geq 2.$  The autcommutator subgroup of weight i is defined as:

 $K_i(G) = [G, \underbrace{Aut(G), ..., Aut(G)}_{i \text{ times}}] = \langle [g, \alpha_1, \alpha_2, ..., \alpha_i] | g \in G, \alpha_1, \alpha_2, ..., \alpha_i \in Aut(G) \rangle.$  Clearly

 $K_i(G)$  is a characteristic subgroup of G, for all  $i \geq 1$ . Thus we have a descending chain of autocommutator subgroups  $G = K_0(G) \supseteq K_1(G) \supseteq K_2(G) \supseteq ... \supseteq K_i(G) \supseteq ...$ , called the lower autocentral series of G. A group G is said to be lower autonilpotent of class n if  $K_n(G) = 1$  and  $K_{n-1}(G) \neq 1$ . See more in [1].

1.1. DEFINITION. Let G be a finite group.  $H = St_A(x) = \{\alpha \in Aut(G) | \alpha(x) = x\}$  is called stabilizer of x in automorphism group of a group G.

Clearly,  $H = St_A(x)$  is a subgroup of A. Since Aut(G) acts as permutation group on G, define a relation  $\sim$  on G by  $x \sim y$  if there exists  $\alpha \in Aut(G)$  with  $\alpha(x) = y$ , for  $x, y \in G$ . It is clear that  $\sim$  is an equivalence relation and that G is partitioned into automorphism orbits. Let  $Cl_A(x)$  be the orbit containing x which is called automorphic class of x in G. It is well-known that  $|Cl_A(x)| = [Aut(G) : St_A(x)]$ . Obviously if Aut(G) is limited to Inn(G), then L(G) = Z(G)and automorphic class of G equals to conjugacy class of G. In the second section of this paper introductory properties of automorphic class of a given finite group are studied. In the final section, It is proved that even number of automorphic classes results in Aut(G) of even order.

### 2. Some Properties of Automorphic Classes of finite groups

In the following example, we specify all automorphic classes of  $S_3$ .

 $\begin{array}{ll} \text{2.1. EXAMPLE. Let } S_3 \cong D_6 = \langle a, b | a^2 = b^3 = (ab)^2 = 1 \rangle. \\ |Aut(S_3)| = 6. \text{ Automorphisms of } S_3 \text{ are} \\ \alpha_1: a \mapsto a, b \mapsto b & \alpha_2: a \mapsto ab, b \mapsto b & \alpha_3: a \mapsto ab^2, b \mapsto b \\ \alpha_4: a \mapsto a, b \mapsto b^2 & \alpha_5: a \mapsto ab, b \mapsto b^2 & \alpha_6: a \mapsto ab^2, b \mapsto b^2. \\ \text{Hence } S_3 \text{ has 3 automorphic classes as follows:} \\ Cl_A(1) = \{1\}, Cl_A(a) = \{a, ab, a^2\}, Cl_A(b) = \{b, b^2\} \end{array}$ 

2.2. LEMMA. Let  $Cl_A(x)$  be an automorphic class of G. Then  $(Cl_A(x))$  is characteristic.

<sup>\*</sup>speaker

# Ş. Hosseini

2.3. LEMMA. Let H be a characteristic subgroup of finite group G and |H| = p such that p is the least prime number that divides |G|, then  $H \subseteq L(G)$ .

2.4. THEOREM. If |G| = |Aut(G)| and  $|Cl_A(x)| = 2$  for some  $x \in G$ , then Aut(G) has a non trivial normal subgroup.

#### **3.** Relation Between Automorphic classes Cardinality and |Aut(G)|

In this section we study relation between automorphic classes cardinality and the order of automorphism group of a finite group G. Furthermore, we prove that for lower autonilpotent groups, even automorphic classes cardinality results in automorphism group of even order.

3.1. THEOREM. Let G be a finite group and x is an element in G. Then there is a one to one correspondence between elements of  $Cl_A(x)$  and right cosets of  $St_A(x)$  in Aut(G).

3.2. THEOREM. Let G be a finite group then  $|G| = L(G) + \sum_{i=1}^{r} [Aut(G) : St_A(g_i)]$  where  $g_1, \ldots, g_r \in G - L(G)$ .

3.3. THEOREM. Let G be a finite group then  $k^*(G)$ , the number of automorphic classes of G is  $k^*(G) = \frac{1}{Aut(G)} \sum_{x \in G} |St_A(x)|.$ 

An authomorphism  $\alpha$  of a group G is said to be Inverse Point Free (IPF) if  $\alpha(x) = x^{-1} \Rightarrow x = 1 \quad \forall x \in G$ . Accordingly, G is called IPF if every  $\alpha \in Aut(G)$  is IPF.

3.4. LEMMA. ([4], Theorem 1.) G is IPF if and only if |G|| Aut(G) | is an odd number.

3.5. THEOREM. Let G be a lower autonilpotent group. If the number of automorphic classes of G is even, then |Aut(G)| is also even.

PROOF. If Aut(G) is odd, then G is even and hence |G||Aut(G)| is also even. Therefore by Lemma 3.4 G is not IPF which is a contradiction with lower autonilpotency of G and the proof is completed.

#### References

- H. Arora and R. Karan, On autonilpotent and autosoluble groups, Note di Matematica, 38 (2018), 35-45
- [2] P. V. Hegarty, The Absolute Center of a Groups, Journal of Algebra, 169 (1994), 929-935.
- [3] M. R. R. Moghaddam, Some Properties of Autocommutator Groups, Presented at group theory conference, University of Isfahan, (March-2009), 12-13.
- [4] F. Parvaneh, Some Properties of autonilpotent Groups, Italian Journal of Pure and Applied Mathematics, 35 (2015), 1-8.
- [5] D. J. S. Robinson, A Course in the Theory of Groups, 2<sup>nd</sup> ed. Springer-Verlag. New York, Berlin, 1996.

E-mail: sh.hoseini@iaubir.ac.ir